

    
      
          
            
  
ml4ir - Machine Learning for Information Retrieval

ml4ir is an open source library for training and deploying deep learning models for search applications. ml4ir is built on top of python3 and tensorflow 2.x for training and evaluation. It also comes packaged with scala utilities for JVM inference.

ml4ir is designed as modular subcomponents which can easily be combined and customized to build a variety of search ML models such as:


	Learning to Rank


	Query Auto Completion


	Document Classification


	Query Classification


	Named Entity Recognition


	Top Results


	Query2SQL


	add your application here




[image: _images/ml4ir.png]

Motivation

Search is a complex data space with lots of different types of ML tasks working on a combination of structured and unstructured data sources. There existed no single library that


	provides an end-to-end training and serving solution for a variety of search applications


	allows training of models with limited coding expertise


	allows easy customization to build complex models to tackle a variety of problems in the search domain


	focuses on performance, robustness and offline-online feature parity


	enables fast prototyping




So, we built ml4ir.



Guiding Principles

Customizable Library

Firstly, we want ml4ir to be an easy-to-use and highly customizable library so that you can build the search application of your need. ml4ir allows each of its subcomponents to be overriden, mixed and match with other custom modules to create and deploy models.

Configurable Toolkit

While ml4ir can be used as library, it also comes prepackaged with all the popular search based losses, metrics, embeddings, layers, etc. to enable someone with limited tensorflow expertise to quickly load their training data and train models for the task of interest. ml4ir achieves this by following a hybrid approach which allow for each subcomponent to be completely controlled through configurations alone. Most search based ML applications can be built this way.

Performance First

ml4ir is built using the TFRecord data pipeline, which is the recommended data format for tensorflow data loading. We combine ml4ir’s high configurability with out of the box tensorflow data optimization utilities to define model features and build a data pipeline that easily allows training on huge amounts of data. ml4ir also comes packaged with utilities to convert data from CSV and libsvm format to TFRecord.

Training-Serving Handshake

As ml4ir is a common library for training and serving deep learning models, this allows us to build tight integration and fault tolerance into the models that are trained. ml4ir also uses the same configuration files for both training and inference keeping the end-to-end handshake clean. This allows user’s to easily plug in any feature store(or solr) into ml4ir’s serving utilities to deploy models in one’s production environments.

Search Model Hub

The goal of ml4ir is to form a common hub for the most popular deep learning layers, losses, metrics, embeddings used in the search domain. We’ve built ml4ir with a focus on quick prototyping with wide variety of network architectures and optimizations. We encourage contributors to add to ml4ir’s arsenal of search deep learning utilities as we continue to do so ourselves.



Contents



	Installation
	Using ml4ir as a library
	Requirements





	Using ml4ir as a toolkit or contributing to ml4ir
	Docker (Recommended)
	Requirements





	Virtual Environment
	Requirements





	Contributing to ml4ir





	Running Tests





	Quickstart
	ml4ir’s Architecture

	Using ml4ir as a toolkit
	Pipelines
	Learning to Rank

	Query Classification

	Custom Pipeline





	Command Line Arguments

	Usage Examples
	Learning to Rank [bookmark: learning-to-rank-usage]

	Query Classification [bookmark: query-classification-usage]









	Using ml4ir as a library

	Data Loading Pipeline

	Defining the FeatureConfig
	Main Keys

	Feature Information
	Example









	Defining the ModelConfig

	Saving ml4ir Models
	Saving preprocessing logic





	Serving ml4ir Models on the JVM
	A high level usage of the Scala utilities









	Advanced Guide
	Using custom preprocessing functions

	Using custom feature transformation functions

	Predicting with a model trained on ml4ir
	Predicting with the tfrecords signature

	Predicting with the default signature





	Transfer Learning with ml4ir

	Running Kfold Cross Validation





	API Documentation
	Pipelines
	RelevancePipeline

	RankingPipeline

	ClassificationPipeline





	Data Loaders and Helpers
	RelevanceDataset

	tfrecord_reader

	csv_reader

	tfrecord_writer





	Relevance Models
	RelevanceModel

	RankingModel





	Feature Configuration
	FeatureConfig

	ExampleFeatureConfig

	SequenceExampleFeatureConfig





	Losses
	RelevanceLossBase

	SigmoidCrossEntropy

	RankOneListNet

	CategoricalCrossEntropy





	Metrics
	MeanReciprocalRank

	AverageClickRank

	CategoricalAccuracy

	Top5CategoricalAccuracy





	Feature Processing

	Feature Transformation
	Categorical Feature Transformations

	Sequence Feature Transformations

	Tensorflow Native Operations





	Interaction Model
	InteractionModel

	UnivariateInteractionModel

	feature_layer





	Scorer
	ScorerBase

	RelevanceScorer





	File I/O Utilities
	FileIO

	LocalIO

	SparkIO









	Changelog
	[0.1.16] - 2023-02-06
	Added





	[0.1.15] - 2023-01-20
	Changed

	Added





	[0.1.14] - 2022-11-18
	Changed





	[0.1.13] - 2022-10-17
	Fixed

	Added





	[0.1.12] - 2022-04-26

	[0.1.11] - 2021-01-18
	Changed





	[0.1.10] - 2021-12-29
	Changed





	[0.1.9] - 2021-11-29
	Changed





	[0.1.8] - 2021-10-21
	Added





	[0.1.7] - 2021-09-30
	Added





	[0.1.6] - 2021-07-16
	Fixed





	[0.1.5] - 2021-07-15
	Added





	[0.1.4] - 2021-06-30
	Changed





	[0.1.3] - 2021-06-24
	Changed





	[0.1.2] - 2021-06-16
	Added





	[0.1.1] - 2021-05-20
	Added





	[0.1.0] - 2021-03-01
	Changed





	[0.0.5] - 2021-02-17
	Added

	Fixed









	License

	Contact Us









          

      

      

    

  

    
      
          
            
  
Installation


Using ml4ir as a library


Requirements


	python3.{6,7} (tf2.0.3 is not available for python3.8)


	pip3




ml4ir can be installed as a pip package by using the following command

pip install ml4ir





This will install ml4ir-0.1.3 [https://pypi.org/project/ml4ir/] (the current version) from PyPI.

To install optional dependencies like pygraphviz [https://pygraphviz.github.io/documentation/stable/install.html], use the following command:

pip3 install ml4ir[visualization]





To use pre-built pipelines that come with ml4ir, make sure to install it as follows (this installs pyspark and pygraphviz as well)

pip install ml4ir[all]








Using ml4ir as a toolkit or contributing to ml4ir

Firstly, clone ml4ir

git clone https://github.com/salesforce/ml4ir





You can use and develop on ml4ir either using docker or virtualenv


Docker (Recommended)


Requirements


	docker [https://www.docker.com/] (18.09+ tested)


	docker-compose [https://docs.docker.com/compose/]




We have set up a docker-compose.yml file for building and using docker containers to train models.

Change the working directory to the python package

cd path/to/ml4ir/python/





To build the docker image and run unit tests

docker-compose up --build





To only build the ml4ir docker image without running tests

docker-compose build








Virtual Environment


Requirements


	python3.{6,7} (tf2.0.3 is not available for python3.8)


	pip3




Change the working directory to the python package

cd path/to/ml4ir/python/





Install virtualenv

pip3 install virtualenv





Create new python3 virtual environment inside your git repo (it’s .gitignored, don’t worry)

python3 -m venv env/.ml4ir_venv3





Activate virtualenv

source env/.ml4ir_venv3/bin/activate





Install all dependencies

pip3 install --upgrade setuptools
pip3 install --upgrade pip
pip3 install -r requirements.txt





Set the PYTHONPATH environment variable to point to the python package

export PYTHONPATH=$PYTHONPATH:`pwd`





For more information in pygraphviz and its prerequisites, refer to pygraphviz documentation [https://pygraphviz.github.io/documentation/stable/index.html]




Contributing to ml4ir


	Install python dependencies from the build-requirements.txt to setup the dependencies required for pre-commit hooks.


	pre-commit-hooks are required, and installed as a requirement for contributing to ml4ir.
If an error results that they didn’t install, execute pre-commit install to install git hooks in your .git/ directory.







Running Tests

To run all the python based tests under ml4ir

Using docker

docker-compose up





Using virtualenv

python3 -m pytest





To run specific tests,

python3 -m pytest /path/to/test/module









          

      

      

    

  

    
      
          
            
  
Quickstart



	ml4ir’s Architecture

	Using ml4ir as a toolkit
	Pipelines
	Learning to Rank

	Query Classification

	Custom Pipeline





	Command Line Arguments

	Usage Examples
	Learning to Rank [bookmark: learning-to-rank-usage]

	Query Classification [bookmark: query-classification-usage]









	Using ml4ir as a library

	Data Loading Pipeline

	Defining the FeatureConfig
	Main Keys

	Feature Information
	Example









	Defining the ModelConfig

	Saving ml4ir Models
	Saving preprocessing logic





	Serving ml4ir Models on the JVM
	A high level usage of the Scala utilities












          

      

      

    

  

    
      
          
            
  
ml4ir’s Architecture

ml4ir is designed as a network of tightly coupled modular subcomponents. This lends itself to high customizability. In this section, we will briefly describe each of the subcomponents and how it all fits together.

[image: ../_images/ml4ir_framework.png]

FeatureConfig

The FeatureConfig is the main driver of ml4ir bridging the gap between the training and serving side. It is loaded from a YAML file and can be used to configure the list of features used by the model for training and serving. Additionally, it can be used to define preprocessing and feature transformation functions and their respective arguments. It can be extended to configure additional metadata for the features as needed.

More details about defining a FeatureConfig for your ml4ir model here

Inputs

Keras Input placeholders constructed from the FeatureConfig that forms the first layer of the RelevanceModel and will be used by the model for learning a scoring function. Additionally, metadata features can also be made available in the Input layer that can be used to compute custom losses and metrics.

InteractionModel

The InteractionModel defines the feature transformation layer that converts the Input layer into numeric tensors that can be used to learn a scoring function. This layer can be used for a variety of transformations. Few examples are:


	converting categorical text labels into embedding vectors


	converting text into character embeddings and sequence encoding via a variety of layers like LSTM, GRU, transformers, etc.


	contextual embedding layers such as BERT, ELMO, GPT, etc.




Currently, ml4ir supports a univariate interaction model where a transformation function can be applied to a single feature. This can be extended to define custom interaction models that allow for cross feature interaction based transformations.

Loss

Loss is an implementation of the RelevanceLossBase that can be used to define the loss function and the corresponding final activation layer to be used to train a RelevanceModel. The loss function is defined on y_true and y_pred, the labels and predicted scores from the model, respectively. Metadata features can be used to define complex and custom loss functions to be used with RelevanceModel.

ModelConfig

ModelConfig is a YAML configuration file that defines the scoring function of the RelevanceModel. Specifically, it defines the logic to convert the transformed feature vectors into the model score. Currently, the ModelConfig only supports a DNN(multi layer perceptron like) architecture, but can be extended to handle sequential and convolution based scoring functions.

Scorer

Scorer defines the tensorflow layers of the model to convert the Input layer to the scores by combining and wrapping together the ModelConfig, InteractionModel and the Loss. Custom scorer objects can be defined and used with ml4ir as needed.

Callbacks

A list of keras Callbacks that can be used with the RelevanceModel for training and evaluation. ml4ir already comes packaged with commonly used callbacks for model checkpointing, early stopping and tensorboard. Additionally, ml4ir also defines debugging callbacks to log training and evaluation progress. Users have the flexibililty to use custom callback functions with ml4ir models as well.

Optimizer

Tensorflow’s keras based optimizer object that is used for gradient optimization and learning the model weights. ml4ir also plays well with a wide variety of optimizers with custom learning rate schedules such as exponential decay, cyclic learning rate, etc.

Metrics

List of keras Metric classes that can be used to compute validation and test metrics for evaluating the model. Metadata features can be used to define custom and complex metrics to be used with RelevanceModel.

RelevanceModel

The Scorer is wrapped with the keras callbacks, optimizer and metrics to define a RelevanceModel. The RelevanceModel can be used like a Keras model with fit(), predict(), evaluate(), save() and load() which allow training, evaluation of models for search applications. Pretrained models and weights can be loaded for fine tuning or computing test metrics.

To learn more about constructing a RelevanceModel from the ground up check this guide




          

      

      

    

  

    
      
          
            
  
Using ml4ir as a toolkit


	Pipelines


	Learning to Rank


	Query Classification


	Custom Pipeline






	Command Line Arguments


	Usage Examples


	Learning to Rank


	Query Classification









Pipelines

ml4ir comes packaged with pre-defined configurable pipelines for popular search ML tasks. Currently, ml4ir supports the following tasks.


Learning to Rank

Learning to Rank(LTR) [https://en.wikipedia.org/wiki/Learning_to_rank] is the task of learning an ranking function that finds the most optimal ordering of a list of documents for a given query to improve relevance. Each document is represented in the dataset as a feature set computed for the query-document pair. The labels for this task can either be graded relevance values defined for the list of records in a query or a binary click/no-click label.

[image: ../_images/ranking_data.png]

In the sample ranking data above, each row represents a query-document pair of features. Features like query_text, domain_name are common across documents. Whereas features like record_text, popularity_score, quality_score are unique to each document. In this example, we learn a ranking function using binary clicks as the label. The state of the art LTR models of today rely on listwise losses and complex groupwise scoring functions.

To train and evaluate a learning to rank model, use the predefined RankingPipeline.



Query Classification

Query Classification [https://en.wikipedia.org/wiki/Web_query_classification] is the task of classifying a given user query into a set of predefined categories. Additional features such as user context, domain of query can be used to personalize the predictions.

[image: ../_images/query_classification_data.png]

In the sample query classification data above, each row represents a user query. We try to predict the product_group category using the query_text, domain_name and previous_products. These features define the user’s context at the time of querying and also the actual query text made by the user. This type of query classification can be used to further narrow down search results and enhance the user search experience.

To train and evaluate a learning to rank model, use the predefined ClassificationPipeline.



Custom Pipeline

To define your own custom ml4ir pipeline, you can override the RelevancePipeline** to plug in the RelevanceModel you want to train and evaluate.




Command Line Arguments









	Name

	Type

	Default

	Description





	–data_dir

	<class ‘str’>

	None

	Path to the data directory to be used for
training and inference. Can optionally
include train/ val/ and test/
subdirectories. If subdirectories are not
present, data will be split based on
train_pcent_split



	–data_format

	<class ‘str’>

	tfrecord

	Format of the data to be used. Should be
one of the Data format keys in
ml4ir/config/keys.py



	–tfrecord_type

	<class ‘str’>

	example

	TFRecord type of the data to be used.
Should be one of the TFRecord type keys in
ml4ir/config/keys.py



	–feature_config

	<class ‘str’>

	None

	Path to YAML file or YAML string with
feature metadata for training.



	–model_file

	<class ‘str’>

	
	Path to a pretrained model to load for
either resuming training or for running
ininference mode.



	–model_config

	<class ‘str’>

	ml4ir/base/conf
ig/default_mode
l_config.yaml

	Path to the Model config YAML used to
build the model architecture.



	–optimizer_key

	<class ‘str’>

	adam

	Optimizer to use. Has to be one of the
optimizers in OptimizerKey under
ml4ir/config/keys.py



	–loss_key

	<class ‘str’>

	None

	Loss to optimize. Has to be one of the
losses in LossKey under
ml4ir/config/keys.py



	–metrics_keys

	<class ‘str’>

	None

	Metric to compute. Can be a list. Has to
be one of the metrics in MetricKey under
ml4ir/config/keys.py



	–monitor_metric

	<class ‘str’>

	None

	Metric name to use for monitoring training
loop in callbacks. Must be one MetricKey
under ml4ir/config/keys.py



	–monitor_mode

	<class ‘str’>

	None

	Metric mode to use for monitoring training
loop in callbacks



	–num_epochs

	<class ‘int’>

	5

	Max number of training epochs(or full pass
over the data)



	–batch_size

	<class ‘int’>

	128

	Number of data samples to use per batch.



	–learning_rate

	<class ‘float’>

	0.01

	Step size (e.g.: 0.01)



	–learning_rate_decay

	<class ‘float’>

	1.0

	Decay rate for the learning rate.Check for
more info -> https://www.tensorflow.org/ap
i_docs/python/tf/keras/optimizers/schedule
s/ExponentialDecay



	–learning_rate_decay_steps

	<class ‘int’>

	10000000

	Decay rate for the learning rate.Check for
more info -> https://www.tensorflow.org/ap
i_docs/python/tf/keras/optimizers/schedule
s/ExponentialDecay



	–compute_intermediate_stats

	<class ‘bool’>

	True

	Whether to compute intermediate stats on
test set (mrr, acr, etc) (slow)



	–execution_mode

	<class ‘str’>

	train_inference
_evaluate

	Execution mode for the pipeline. Should be
one of ExecutionModeKey



	–random_state

	<class ‘int’>

	123

	Initialize the seed to control randomness
for replication



	–run_id

	<class ‘str’>

	
	Unique string identifier for the current
training run. Used to identify logs and
models directories. Autogenerated if not
specified.



	–run_group

	<class ‘str’>

	general

	Unique string identifier to group multiple
model training runs. Allows for defining a
meta grouping to filter different model
training runs for best model selection as
a post step.



	–run_notes

	<class ‘str’>

	
	Notes for the current training run. Use
this argument to add short description of
the model training run that helps in
identifying the run later.



	–models_dir

	<class ‘str’>

	models/

	Path to save the model. Will be expanded
to models_dir/run_id



	–logs_dir

	<class ‘str’>

	logs/

	Path to save the training/inference logs.
Will be expanded to logs_dir/run_id



	–checkpoint_model

	<class ‘bool’>

	True

	Whether to save model checkpoints at the
end of each epoch. Recommended - set to
True



	–train_pcent_split

	<class ‘float’>

	0.8

	Percentage of all data to be used for
training. The remaining is used for
validation and testing. Remaining data is
split in half if val_pcent_split or
test_pcent_split are not specified.
Note: Currently not supported



	–val_pcent_split

	<class ‘float’>

	-1

	Percentage of all data to be used for
testing.
Note: Currently not supported



	–test_pcent_split

	<class ‘float’>

	-1

	Percentage of all data to be used for
testing.
Note: Currently not supported



	–max_sequence_size

	<class ‘int’>

	0

	Maximum number of elements per sequence
feature.



	–inference_signature

	<class ‘str’>

	serving_default

	SavedModel signature to be used for
inference



	–use_part_files

	<class ‘bool’>

	False

	Whether to look for part files while
loading data



	–logging_frequency

	<class ‘int’>

	25

	How often to log results to log file. Int
representing number of batches.



	–group_metrics_min_queries

	<class ‘int’>

	None

	Minimum number of queries per group to be
used to computed groupwise metrics.



	–gradient_clip_value

	<class ‘float’>

	5.0

	Gradient clipping value/threshold for the
optimizer.



	–compile_keras_model

	<class ‘bool’>

	False

	Whether to compile a loaded SavedModel
into a Keras model. NOTE: This requires
that the SavedModel’s architecture, loss,
metrics, etc are the same as the
RankingModelIf that is not the case, then
you can still use a SavedModel from a
model_file for inference/evaluation only



	–use_all_fields_at_inference

	<class ‘bool’>

	False

	Whether to require all fields in the
serving signature of the SavedModel. If
set to False, only requires fields with
required_only=True



	–pad_sequence_at_inference

	<class ‘bool’>

	False

	Whether to pad sequence at inference time.
Used to define the TFRecord serving
signature in the SavedModel



	–output_name

	<class ‘str’>

	relevance_score

	Name of the output node of the model



	–early_stopping_patience

	<class ‘int’>

	2

	How many epochs to wait before early
stopping on metric degradation



	–file_handler

	<class ‘str’>

	local

	String specifying the file handler to be
used. Should be one of FileHandler keys in
ml4ir/base/config/keys.py



	–initialize_layers_dict

	<class ‘str’>

	{}

	Dictionary of pretrained layers to be
loaded.The key is the name of the layer to
be assigned the pretrained weights.The
value is the path to the pretrained
weights.



	–freeze_layers_list

	<class ‘str’>

	[]

	List of layer names that are to be frozen
instead of training.Usually coupled with
initialize_layers_dict to load pretrained
weights and freeze them








Usage Examples


Learning to Rank [bookmark: learning-to-rank-usage]

Using TFRecord input data

python ml4ir/applications/ranking/pipeline.py \
--data_dir ml4ir/applications/ranking/tests/data/tfrecord \
--feature_config ml4ir/applications/ranking/tests/data/configs/feature_config.yaml \
--run_id test \
--data_format tfrecord \
--execution_mode train_inference_evaluate





Using CSV input data

python ml4ir/applications/ranking/pipeline.py \
--data_dir ml4ir/applications/ranking/tests/data/csv \
--feature_config ml4ir/applications/ranking/tests/data/configs/feature_config.yaml \
--run_id test \
--data_format csv \
--execution_mode train_inference_evaluate





Running in inference mode using the default serving signature

python ml4ir/applications/ranking/pipeline.py \
--data_dir ml4ir/applications/ranking/tests/data/tfrecord \
--feature_config ml4ir/applications/ranking/tests/data/configs/feature_config.yaml \
--run_id test \
--data_format tfrecord \
--model_file `pwd`/models/test/final/default \
--execution_mode inference_only





Training a simple 1 layer linear ranking model

python ml4ir/applications/ranking/pipeline.py \
--data_dir ml4ir/applications/ranking/tests/data/tfrecord \
--feature_config ml4ir/applications/ranking/tests/data/configs/linear_model/feature_config.yaml \
--model_config ml4ir/applications/ranking/tests/data/configs/linear_model/model_config.yaml \
--run_id test \
--data_format tfrecord \
--execution_mode train_inference_evaluate







Query Classification [bookmark: query-classification-usage]

Using TFRecord

python ml4ir/applications/classification/pipeline.py \
--data_dir ml4ir/applications/classification/tests/data/tfrecord \
--feature_config ml4ir/applications/classification/tests/data/configs/feature_config.yaml \
--model_config ml4ir/applications/classification/tests/data/configs/model_config.yaml \
--batch_size 32 \
--run_id test \
--data_format tfrecord \
--execution_mode train_inference_evaluate





Using CSV

python ml4ir/applications/classification/pipeline.py \
--data_dir ml4ir/applications/classification/tests/data/csv \
--feature_config ml4ir/applications/classification/tests/data/configs/feature_config.yaml \
--model_config ml4ir/applications/classification/tests/data/configs/model_config.yaml \
--batch_size 32 \
--run_id test \
--data_format csv \
--execution_mode train_inference_evaluate





Running in inference mode using the default serving signature

python ml4ir/applications/classification/pipeline.py \
--data_dir ml4ir/applications/classification/tests/data/tfrecord \
--feature_config ml4ir/applications/classification/tests/data/configs/feature_config.yaml \
--model_config ml4ir/applications/classification/tests/data/configs/model_config.yaml \
--batch_size 32 \
--run_id test \
--data_format tfrecord \
--model_file `pwd`/models/test/final/default \
--execution_mode inference_only










          

      

      

    

  

    
      
          
            
  
Using ml4ir as a library

Let’s try to train a simple Learning-to-Rank model with some sample data…

Setup FileIO handler(and logger)

from ml4ir.base.io.local_io import LocalIO
from ml4ir.base.io.file_io import FileIO
import logging

file_io : FileIO = LocalIO()

# Set up logger
logger = logging.getLogger()





Load the FeatureConfig from a predefined YAML file

More information about defining a feature configuration YAML file here

from ml4ir.base.features.feature_config import FeatureConfig, SequenceExampleFeatureConfig
from ml4ir.base.config.keys import *

feature_config: SequenceExampleFeatureConfig = FeatureConfig.get_instance(
    tfrecord_type=TFRecordTypeKey.SEQUENCE_EXAMPLE,
    feature_config_dict=file_io.read_yaml(FEATURE_CONFIG_PATH),
    logger=logger)





Create a RelevanceDataset

More information about the data loading pipeline here

from ml4ir.base.data.relevance_dataset import RelevanceDataset

relevance_dataset = RelevanceDataset(data_dir=DATA_DIR,
                            data_format=DataFormatKey.CSV,
                            feature_config=feature_config,
                            tfrecord_type=TFRecordTypeKey.SEQUENCE_EXAMPLE,
                            max_sequence_size=MAX_SEQUENCE_SIZE,
                            batch_size=128,
                            preprocessing_keys_to_fns={},
                            file_io=file_io,
                            logger=logger)





Define an InteractionModel

from ml4ir.base.model.scoring.interaction_model import InteractionModel, UnivariateInteractionModel

interaction_model: InteractionModel = UnivariateInteractionModel(
                                            feature_config=feature_config,
                                            tfrecord_type=TFRecordTypeKey.SEQUENCE_EXAMPLE,
                                            max_sequence_size=MAX_SEQUENCE_SIZE,
                                            feature_layer_keys_to_fns={},
                                            file_io=file_io,
                                        )





Define losses, metrics and optimizer

Here, we are using predefined losses, metrics and optimizers. But each of these can be customized as needed.

from ml4ir.base.model.losses.loss_base import RelevanceLossBase
from ml4ir.applications.ranking.model.losses import loss_factory
from ml4ir.applications.ranking.model.metrics import metric_factory
from ml4ir.applications.ranking.config.keys import LossKey, MetricKey, ScoringTypeKey

# Define loss object from loss key
loss: RelevanceLossBase = loss_factory.get_loss(
                                loss_key=LossKey.RANK_ONE_LISTNET,
                                scoring_type=ScoringTypeKey.POINTWISE)
    
# Define metrics objects from metrics keys
metric_keys = [MetricKey.MRR, MetricKey.ACR]
metrics: List[Union[Type[Metric], str]] = [metric_factory.get_metric(metric_key=m) for m in metric_keys]
    
# Define optimizer
optimizer: Optimizer = get_optimizer(
                            optimizer_key=OptimizerKey.ADAM,
                            learning_rate=0.001
                        )





Define the Scorer object by wrapping the InteractionModel and the loss function

scorer: RelevanceScorer = RelevanceScorer.from_model_config_file(
    model_config_file=MODEL_CONFIG_PATH,
    interaction_model=interaction_model,
    loss=loss,
    logger=logger,
    file_io=file_io,
)





Combine it all to create a RankingModel

ranking_model: RelevanceModel = RankingModel(
                                    feature_config=feature_config,
                                    tfrecord_type=TFRecordTypeKey.SEQUENCE_EXAMPLE,
                                    scorer=scorer,
                                    metrics=metrics,
                                    optimizer=optimizer,
                                    file_io=file_io,
                                    logger=logger,
                                )





Training the RankingModel and monitor for MRR metric

ranking_model.fit(dataset=relevance_dataset,
                  num_epochs=3, 
                  models_dir=MODELS_DIR,
                  logs_dir=LOGS_DIR,
                  monitor_metric="new_MRR",
                  monitor_mode="max")





Run inference on the RankingModel

ranking_model.predict(test_dataset=relevance_dataset.test).sample(10)





Finally, save the model

One can additionally pass preprocessing functions to be persisted as part of the SavedModel and into the tensorflow graph. For more information on how to do this, check here

ranking_model.save(models_dir=MODELS_DIR,
                   preprocessing_keys_to_fns={},
                   required_fields_only=True)





For details on serving this model on the JVM check this guide




          

      

      

    

  

    
      
          
            
  
Data Loading Pipeline

The ml4ir data loading pipeline is built on top of the tensorflow recommended data format called TFRecords [https://www.tensorflow.org/tutorials/load_data/tfrecord]. TFRecords is built using protocol buffers, which is a cross-language cross-platform serialization format for structured data. This makes it the best data format for search based applications like ranking, classification, etc.

There are two types of TFRecord messages provided - Example and SequenceExample.

The first one that you see on the left is called Example. Here, we are using it to store sample query classification data. Each Example TFRecord message contains the features for a single query as key-value pairs. So the query text, domain name and previous products for a given query are stored in one single structure along with the product group, which is the classification label. We can build and store a TFRecordDataset as a collection of such Example messages.

The second type of protobuf message supported by TFRecords is called SequenceExample. SequenceExample contains two sub-types of features called as Context features and Sequence features (or feature lists). We use this to store data for models like Learning to Rank. We use context features to store features that are common across the query such as query text, domain name, user ID. Similar to Example, this is stored in one single sub-structure as key value pairs. Next we have the sequence features, which we use to store values for each feature as an ordered sequence corresponding to the documents. Here, we can see the features that are unique to each document such as popularity score, page views, record text. Finally, since the click label is also defined at a document level, we store that as a sequence feature as well.

Storing the Ranking data this way helps us achieve two things:


	Firstly, we now have a compact structured representation of data for ranking without redundant information as the query level features are stored only once per query as context features


	Secondly and more importantly, we now have a single object that contains all the query-document features for a given query. This means that we have all the information needed to learn complex ranking functions and define listwise losses for a given query without the need for any in-graph or preprocessing groupby operations.




This allows the storage to be efficient and training process to be fast.

[image: ../_images/tfrecord.png]

The TFRecord data pipeline on ml4ir is configured out of the box for optimized data loading and preprocessing. The batches are lazy loaded and optimized by prefetching into memory for faster model training at scale. The serialized TFRecord messages are parsed and features are extracted based on the configuration specified in the FeatureConfig. ml4ir additionally applies preprocessing functions to the extracted features before feeding them as input into the model.




          

      

      

    

  

    
      
          
            
  
Defining the FeatureConfig

In this section, we describe how to define a feature configuration YAML file for your ml4ir application.

There are two types of feature configs that are supported in ml4ir - ExampleFeatureConfig and SequenceExampleFeatureConfig corresponding to the two types of TFRecord training and serving data format supported.


Main Keys

The feature config YAML file contains these main keys and their corresponding definitions:


	query_key : Feature used to uniquely identify each query (or data point)


	label : Feature to be used as the label


	rank : Feature to identify the position of the sequence record in a SequenceExample proto. It does not need to be specified if using Example data format.


	features : List of features that are used by the RelevanceModel for training and evaluation.






Feature Information

For each of the features in the FeatureConfig, we define a corresponding feature information definition. The main keys that should be specified for each feature are:



name | str

Name of the feature in the input dataset (CSV, TFRecord, libsvm, etc.)



node_name | str | default=name

Name of the feature in the tensorflow model. This will be the name of the feature in the input layer. Using the same input feature with multiple name nodes and feature transformations is supported. For example, using query text for character and word embeddings.



dtype | str

Tensorflow data type of the feature. Can be string, int64 or float



trainable | bool | default=True

Value representing whether the feature is to be used for the scoring function. If set to False, the feature is considered a metadata feature that can be used to compute custom metrics and losses. Setting it to True, will make the transformed feature available for scoring by default.



tfrecord_type | str

Type of the SequenceExample feature type. Can be one of sequence for features unique to each sequence record or context for features common to all sequence records.



preprocessing_info | list of dicts | default=[]

List of preprocessing functions to be used on the feature. These functions will be applied in the data loading phase and will not be part of the tensorflow model. ml4ir provides an option to persist preprocessing logic as part of the SavedModel if the preprocessing functions are tensorflow compatible and serializable code.

For each preprocessing function, specify fn, the name of the function to be used, and args, a dictionary of values that are passed as arguments to the function. For example, to preprocess a text feature to remove punctuation and lower case, one can specify the preprocessing info as below

preprocessing_info:
  - fn: preprocess_text
    args:
      remove_punctuation: true
      to_lower: true





For more information on defining custom preprocessing functions and using it with ml4ir, check this guide



feature_layer_info | dict

Definition of the feature transformation function to be applied to the feature in the model. Use this section to specify predefined or custom transformation functions to the model. Only tensorflow compatible functions can be used here as the transformation functions will be part of the RelevanceModel and serialized when the model is saved.

To define a feature transformation specify fn, the feature transformation function to be applied on the feature, and args, the key value pairs to be passed as arguments to the transformation function. For example, to use a text feature to learn character embeddings and produce a sequence encoding by using a bidirectional LSTM, define the feature layer as below

feature_layer_info:
  type: numeric
  fn: bytes_sequence_to_encoding_bilstm
  args:
    encoding_type: bilstm
    encoding_size: 128
    embedding_size: 128
    max_length: 20





For more information on defining custom feature transformation functions and using it with ml4ir, check this guide



serving_info | dict

Definition of serving time feature attributes that will be used for model inference in production. Specifically, three key attributes can be specified in this section - name, default_value and required. name captures the name of the feature in production feature store that should be mapped to the model feature while constructing the input TFRecord proto. default_value captures the value to be used to fill the input feature tensor if the feature is absent in production. required is a boolean value representing if the feature is required at inference; the feature tensor will be set to default value otherwise.



log_at_inference | bool | default=False

Value representing if the feature should be logged when running RelevanceModel.predict(...). Setting to True, returns the feature value when running inference. This can be used for error analysis on test examples and computing more complex metrics in a post processing job.



is_group_metric_key | bool | default=False

Value representing if the feature should be used for computing groupwise metrics when running RelevanceModel.evaluate(...). The usage and implementation of the groupwise metrics is left to the user to be customized. The Ranking models come prepackaged with groupwise MRR and ACR metrics.



is_aux_label | bool | default=False

Value representing if the feature is used as an auxiliary label to compute failure metrics and auxiliary loss. The usage of the feature to compute the failure metrics is left to the user to be customized. The Ranking models come prepackaged with failure metrics computation that can be used, for example, to compute rate of clicks on documents without a match on the subject field.

In Ranking applications,

A secondary label is any feature/value that serves as a proxy relevance assessment that the user might be interested to measure on the dataset in addition to the primary click labels. For example, this could be used with an exact query match feature. In that case, the metric sheds light on scenarios where the records with an exact match are ranked lower than those without. This would provide the user with complimentary information (to typical click metrics such as MRR and ACR) about the model to help make better trade-off decisions w.r.t. best model selection.



The FeatureConfig can be extended to support additional attributes as necessary.


Example

This is an example configuration for the query_text feature, which will first be preprocessed to convert to lower case, remove punctuations, etc. Further we transform the feature with a sequence encoding using a bidirectional LSTM. At serving time, the feature qtext will be mapped from production feature store into the query_text feature for the model.

  - name: query_text
    node_name: query_text
    trainable: true
    dtype: string
    log_at_inference: true
    feature_layer_info:
      fn: bytes_sequence_to_encoding_bilstm
      args:
        encoding_type: bilstm
        encoding_size: 128
        embedding_size: 128
        max_length: 20
    preprocessing_info:
      - fn: preprocess_text
        args:
          remove_punctuation: true
          to_lower: true
    serving_info:
      name: qtext
      required: true
      default_value: ""










          

      

      

    

  

    
      
          
            
  
Defining the ModelConfig

The ModelConfig is created from a YAML file and defines the scoring layers of the RelevanceModel. Specifically, the model config defines the layers to convert the transformed features output by the InteractionModel to the scores for the model.

Currently, ml4ir supports a dense neural network architecture (multi layer perceptron like) and a linear ranking model. Users can define the type of scoring architecture using the architecture_key. The layers of the neural network can be defined as a list of configurations using the layers attribute. For each layer, define the type of tensorflow-keras layer. Then for each layer, we can specify arguments to be passed to the instantiation of the layer. Finally, for each layer, we can specify a name using the name attribute.

Note: To train a simple linear ranking model, use the architecture_key as linear with a single dense layer.

This file is also used to define the optimizer, the learning rate schedule and calibration with
temperature scaling. The current
supported optimizers are: adam, adagrad, nadam, sgd, rms_prop. Each of these optimizers need so set the following hyper-parameter: gradient_clip_value. adam is the default optimizer if non was specified.
The current supported learning rate schedules are: exponential, cyclic, constant and reduce_lr_on_plateau. constant is the default schedule if non was specified with learning rate = 0.01

The exponential learning rate schedule requires defining the following hyper-parameters: initial_learning_rate, decay_steps, decay_rate. For more information, see: https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/schedules/ExponentialDecay

The cyclic learning rate schedule has three different type of policies: triangular, triangular2, exponential. All three types require defining the following hyper-parameters: initial_learning_rate, maximal_learning_rate, step_size. The exponential type requires and additional hyper-parameter: gamma.
For more information, see: https://www.tensorflow.org/addons/api_docs/python/tfa/optimizers/CyclicalLearningRate and https://arxiv.org/pdf/1506.01186.pdf.

The reduce_lr_on_plateau reduces the learning rate by a factor (where factor < 1) when the monitor metric does not improve from one epoch to the next.
Parameters that controls the scheduler:
factor: factor by which the learning rate will be reduced
patience: number of epochs with no improvement for the monitor metric after which learning rate will be reduced
min_lr: The minimum value for allowed for the learning rate to reach.
For more information, see: https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/ReduceLROnPlateau

Calibration will be done as a separate process after possibly training or evaluating a
(classification) model (currently, we do not support calibration for RankingModel).
It implements [temperature scaling](https://github.com/gpleiss
/temperature_scaling) technique to
calibrate output probabilities of a classifier. It uses the validation set to train a
temperature parameter, defined in the ModelConfig file. Then, it evaluates the calibrated
model
on the test set and stores the probability scores before and after applying calibration
. After training TS, the calibrated model can be created using relevance_model .add_temperature_layer(temp_value)  from
the original RelevanceModel and be saved using relevance_model.save(). Note that for
applying calibration to the Functional API model of a RelevanceModel it is
expected that the model has an Activation layer (e.g. SoftMax) as the last layer.

Below you can see an example model config YAML using a DNN architecture to stack a bunch of dense layers with ReLU activation layers. Additionally, there are also a few dropout layers for regularization in between. A triangular2 cyclic learning rate schedule is used with adam optimizer.

architecture_key: dnn
layers:
  - type: dense
    name: first_dense
    units: 256
    activation: relu
  - type: dropout
    name: first_dropout
    rate: 0.0
  - type: dense
    name: second_dense
    units: 64
    activation: relu
  - type: dropout
    name: second_dropout
    rate: 0.0
  - type: dense
    name: final_dense
    units: 1
    activation: null
optimizer: 
  key: adam
  gradient_clip_value: 5.0
lr_schedule:
  key: cyclic
  type: triangular2
  initial_learning_rate: 0.001   #default value is 0.001
  maximal_learning_rate: 0.01    #default value is 0.01
  step_size: 10                  #default value is 10
calibration:
  key: temperature_scaling
  temperature: 1.5





Examples for defining other learning rate schedules in the ModelConfig YAML

Cyclic Learning Rate Schedule

lr_schedule:
  key: cyclic
  type: triangular
  initial_learning_rate: 0.001   #default value is 0.001
  maximal_learning_rate: 0.01    #default value is 0.01
  step_size: 10                  #default value is 10





Exponential Decay Learning Rate Schedule

lr_schedule:
  key: exponential
  learning_rate: 0.01                   #default value is 0.01
  learning_rate_decay_steps: 100000   #default value is 100000
  learning_rate_decay: 0.96              #default value is 0.96





reduce_lr_on_plateau Learning Rate Schedule

lr_schedule:
  key: reduce_lr_on_plateau
  learning_rate: 1.0
  min_lr: 0.01
  patience: 1
  factor: 0.5        








          

      

      

    

  

    
      
          
            
  
Saving ml4ir Models

ml4ir saves RelevanceModel in the SavedModel format. Doing so, allows us to add additional serving signatures to the persisted model. Serving signatures are pre and post processing wrappers for the blackbox tensorflow-keras model that is persisted along with the model. This allows us to write feature preprocessing logic at training time and be used at inference time. Additionally, these pre and post processing wrapper functions are persisted as tensorflow graph operations which allows for fast GPU executable serving time code.

[image: ../_images/saved_model.png]

Saving the models with serving signatures allows ml4ir models to be served directly on TFRecord protocol buffer messages. The model can be saved with a serving signature that accepts a TFRecord proto message as a string tensor which can then be parsed to extract features. The features can then be preprocessed and fed into the model to compute the scores. These scores can optionally be post processed before sending it back to the serving model call. For example, this can be used for converting ranking scores from each document into ranks or sort documents based on the scores.

To save a RelevanceModel, use

relevance_model.save(models_dir=MODELS_DIR,
                     preprocessing_keys_to_fns={},
                     required_fields_only=True)





This saves


	a SavedModel with default serving signature that accepts feature tensors as key value inputs and returns the scores


	a SavedModel with TFRecord serving signature that accepts a TFRecord proto and returns the scores


	individual layer weights that can be used for transfer learning with other ml4ir models





Saving preprocessing logic

Optionally, we can save preprocessing functions in the SavedModel as part of the serving signature as well. This requires that the preprocessing function is a tf.function that can be serialized as a tensorflow layer.

relevance_model.save(
    models_dir=MODEL_DIR,
    preprocessing_keys_to_fns=custom_preprocessing_fns,
    required_fields_only=True)









          

      

      

    

  

    
      
          
            
  
Serving ml4ir Models on the JVM

ml4ir provides Scala utilities for serving a saved model in a JVM based production environment. The utilities provide an easy way to use the FeatureConfig used at training time to map serving features from a production feature store or Solr into model features. These model features can then be packaged as a TFRecord protobuf message, which is then fed into the model. The utilities fetch the scores returned from the model which can then be used as necessary. For example, the scores can be used by the JVM code to


	convert ranking scores to ranks for each document per query


	sort documents based on ranking scores for each document


	convert classification scores to top label




and so on.


A high level usage of the Scala utilities

Load the FeatureConfig, saved model and create handlers to convert raw serving time features into TFRecord protos

val featureConfig = ModelFeaturesConfig.load(featureConfigPath)
val sequenceExampleBuilder = StringMapSequenceExampleBuilder.withFeatureProcessors(featureConfig)
val rankingModelConfig = ModelExecutorConfig(inputTFNode, scoresTFNode)
val rankingModel = new SavedModelBundleExecutor(modelPath, rankingModelConfig)





Load serving time features from a CSV file. Replace this step with any other production feature store or Solr

val queryContextsAndDocs = StringMapCSVLoader.loadDataFromCSV(csvDataPath, featureConfig)





Convert serving time features into a TFRecord proto message using the FeatureConfig (here, SequenceExample proto)

queryContextsAndDocs.map {
case q @ StringMapQueryContextAndDocs(queryContext, docs) =>
  val sequenceExample = sequenceExampleBuilder.build(queryContext, docs)
  (q, sequenceExample, rankingModel(sequenceExample))
}





Pass TFRecord protos to the loaded model and fetch ranking scores

val allScores: Iterable[
  (StringMapQueryContextAndDocs, SequenceExample, Array[Float])] = runQueriesAgainstDocs(
    pathFor("test_data.csv"),
    pathFor("ranking_model_bundle"),
    pathFor("feature_config.yaml"),
    "serving_tfrecord_protos",
    "ranking_score"
  )





Sample returned scores for a query with six documents

0.14608994, 0.21464024, 0.1768626, 0.1312356, 0.19536583, 0.13580573









          

      

      

    

  

    
      
          
            
  
Advanced Guide


Contents


	Using custom preprocessing functions

	Using custom feature transformation functions

	Predicting with a model trained on ml4ir
	Predicting with the tfrecords signature

	Predicting with the default signature





	Transfer Learning with ml4ir

	Running Kfold Cross Validation








          

      

      

    

  

    
      
          
            
  
Using custom preprocessing functions

Preprocessing functions can be used with ml4ir in the data loading pipeline. Below we demonstrate how to define a custom preprocessing function and use it to load the data to train a RelevanceModel.

In this example, we define a preprocessing function to split a string into tokens and pad to max length.

@tf.function
def split_and_pad_string(feature_tensor, split_char=",", max_length=20):
    tokens = tf.strings.split(feature_tensor, sep=split_char).to_tensor()
    
    padded_tokens = tf.image.pad_to_bounding_box(
        tf.expand_dims(tokens[:, :max_length], axis=-1),
        offset_height=0,
        offset_width=0,
        target_height=1,
        target_width=max_length,
    )    
    padded_tokens = tf.squeeze(padded_tokens, axis=-1)
    
    return padded_tokens





Define the preprocessing function in the FeatureConfig YAML:

- name: query_text
  node_name: query_text
  trainable: true
  dtype: string
  log_at_inference: true
  preprocessing_info:
    - fn: split_and_pad_string
      args:
        split_char: " "
        max_length: 20
  serving_info:
    name: query_text
    required: true





Finally, use the custom split and pad prepreprocessing function to load a RelevanceDataset by passing custom functions as the preprocessing_keys_to_fns argument:

custom_preprocessing_fns = {
    "split_and_pad_string": split_and_pad_string
}

relevance_dataset = RelevanceDataset(
        data_dir=CSV_DATA_DIR,
        data_format=DataFormatKey.CSV,
        feature_config=feature_config,
        tfrecord_type=TFRecordTypeKey.EXAMPLE,
        batch_size=128,
        preprocessing_keys_to_fns=custom_preprocessing_fns,
        file_io=file_io,
        logger=logger
    )





Optionally, we can save preprocessing functions in the SavedModel as part of the serving signature as well. This requires that the preprocessing function is a tf.function that can be serialized as a tensorflow layer.

relevance_model.save(
    models_dir=MODEL_DIR,
    preprocessing_keys_to_fns=custom_preprocessing_fns,
    required_fields_only=True)








          

      

      

    

  

    
      
          
            
  
Using custom feature transformation functions

ml4ir allows users to define custom feature transformation functions. Here, we demonstrate how to define a function to convert text into character embeddings and then encode using a bidirectional GRU [https://www.tensorflow.org/api_docs/python/tf/keras/layers/GRU].

def bytes_sequence_to_encoding_bilstm(feature_tensor, feature_info, file_io: FileIO):
    args = feature_info["feature_layer_info"]["args"]

    # Decode string tensor to bytes
    feature_tensor = io.decode_raw(
        feature_tensor, out_type=tf.uint8, fixed_length=args.get("max_length", None),
    )

    feature_tensor = tf.squeeze(feature_tensor, axis=1)
    if "embedding_size" in args:
        char_embedding = layers.Embedding(
            name="{}_bytes_embedding".format(
                feature_info.get("node_name", feature_info.get("name"))
            ),
            input_dim=256,
            output_dim=args["embedding_size"],
            mask_zero=True,
            input_length=args.get("max_length", None),
        )(feature_tensor)
    else:
        char_embedding = tf.one_hot(feature_tensor, depth=256)

    kernel_initializer = args.get("lstm_kernel_initializer", "glorot_uniform")
    encoding = get_bigru_encoding(
        embedding=char_embedding,
        lstm_units=int(args["encoding_size"] / 2),
        kernel_initializer=kernel_initializer,
    )
    return encoding


def get_bigru_encoding(embedding, lstm_units, kernel_initializer="glorot_uniform"):
    encoding = layers.Bidirectional(
        layers.GRU(
            units=lstm_units, return_sequences=False, kernel_initializer=kernel_initializer
        ),
        merge_mode="concat",
    )(embedding)
    encoding = tf.expand_dims(encoding, axis=1)
    return encoding





Note: Any feature transformation function has to be a tensorflow compatible function as it is part of the tensorflow-keras RelevanceModel.

Define the feature transformation function to use with a text feature like query text:

- name: query_text
  node_name: query_text
  trainable: true
  dtype: string
  log_at_inference: true
  feature_layer_info:
    fn: bytes_sequence_to_encoding_bigru
    args:
      encoding_type: bilstm
      encoding_size: 128
      embedding_size: 128
      max_length: 20
  serving_info:
    name: query_text
    required: true





Finally, use the custom transformation functions with the InteractionModel and consecutively, create a RelevanceModel:

custom_feature_transform_fns = {
    "bytes_sequence_to_encoding_bigru": bytes_sequence_to_encoding_bigru,
}

interaction_model: InteractionModel = UnivariateInteractionModel(
                                            feature_config=feature_config,
                                            feature_layer_keys_to_fns=custom_feature_transform_fns,
                                            tfrecord_type=TFRecordTypeKey.EXAMPLE,
                                            file_io=file_io)





Once the InteractionModel has been wrapped with a Scorer, metrics, etc we can define a RelevanceModel. This model can be used for training, prediction and evaluation.




          

      

      

    

  

    
      
          
            
  
Predicting with a model trained on ml4ir

This sections explores how to get predictions from a model that is trained with ml4ir.
For the sake of example, we assume that we have already trained a classification model. To train such a model, see this notebook [https://github.com/salesforce/ml4ir/blob/master/python/notebooks/EntityPredictionDemo.ipynb].

The model artifacts are as follows in the models-dir:

├── checkpoint.tf
│   ├── assets
│   ├── saved_model.pb
│   └── variables
│       ├── variables.data-00000-of-00001
│       └── variables.index
└── final
    ├── default
    │   ├── assets
    │   ├── saved_model.pb
    │   └── variables
    │       ├── variables.data-00000-of-00001
    │       └── variables.index
    ├── layers
    │   ├── bidirectional.npz
    │   ├── bidirectional_1.npz
    │   ├── LAYERS as npz files
    │   ├── .
    │   ├── .
    │   └── vocab_lookup_3.npz
    └── tfrecord
        ├── assets
        ├── saved_model.pb
        └── variables
            ├── variables.data-00000-of-00001
            └── variables.index





The final/default signature is used when we hit the model with tensors.
The final/tfrecord signature is used when we hit it with tfrecords.


Predicting with the tfrecords signature

The second case, which is easier when our data are already in tfrecords requires:

from tensorflow import data
import tensorflow as tf
from tensorflow.keras import models as kmodels

MODEL_DIR = "/PATH/TO/MODEL/"

model = kmodels.load_model(os.path.join(MODEL_DIR, 'final/tfrecord/'), compile=False)
infer_fn = model.signatures["serving_tfrecord"]





And now to construct a dataset and get predictions on it:

dataset = data.TFRecordDataset(glob.glob(os.path.join('/PATH/TO/DATASET', "part*")))
total_preds =  []
i = 0
# A prediction loop; to predict to one batch we can simply `infer_fn(next(iter(dataset)))`
for batch in dataset.batch(1024):
    probs = infer_fn(protos=batch)
    total_preds.append(probs)
# Post processing of predictions







Predicting with the default signature

The default signature requires hitting the model with tensors. This, in turn, requires to
do all the required preprocessing (look-ups, etc) to get these tensors.
This is done with ml4ir. The code sceleton below describes the required steps.

# Define logger
# Define feat_config
# Define RelevanceDataset
# Defing RelevanceModel

relevance_model.predict(relevance_dataset.test)





This process, while much more verbose allows to do custom pre-processing on the model
inputs, which can be different from the preprocessing done during training.
For images, this can be artificial blurring. For text classification, using a subset of the
text and many others.

Recall, pre-processing in ml4ir is controlled in the feature_config.yaml file.
To do something extra during inference, we need to add it to the feature config, so that the
pipeline is updated.
For example, to use only the first few bytes of a text field called query that it is currently
only preprocessed by lower-casing it, we need a function that achieves this and to pass the details
in the config.
So before, the features config could be:

    preprocessing_info:
      - fn: preprocess_text
        args:
          remove_punctuation: true
          to_lower: true





so that preprocess_text is the only preprocessing function. We can now do

    preprocessing_info:
      - fn: preprocess_text
        args:
          remove_punctuation: true
          to_lower: true
      - fn: trim_text
        args:
          keep_first: 3





and define trim text in the code.
Assuming that:

@tf.function
def trim_text(inp, keep_first=3):
    """Keeps the first `keep_first` bytes of a tf.string"""
    return tf.strings.substr(inp, 0, keep_first, unit='BYTE')





then defining the RelevanceDataset as:

relevance_dataset = RelevanceDataset(
        data_dir="/tmp/dataset",
        data_format=DataFormatKey.TFRECORD,
        feature_config=feature_config,
        tfrecord_type=TFRecordTypeKey.EXAMPLE,
        batch_size=1024,
        preprocessing_keys_to_fns={'trim_text': trim_text},  # IMPORTANT!
        file_io=file_io, use_part_files=True,
        logger=logger
    )





will result in queries whose size is 3 bytes (as described in trim_text).

For more information on these, please refer to this notebook [https://github.com/salesforce/ml4ir/blob/master/python/notebooks/predicting_with_ml4ir.ipynb]





          

      

      

    

  

    
      
          
            
  
Transfer Learning with ml4ir

ml4ir saves individual layer weights as part of the RelevanceModel.save(...) call. These layer weights can be used with other ml4ir models for transfer learning. This enables layers like embedding vectors to be shared across search tasks like ranking, classification, etc. with ease.

[image: ../_images/ml4ir_savedmodel.png]

ml4ir provides support for loading pretrained layers and optionally freezing them. Depending on whether these layers/weights need to be fine tuned or used as is, one can freeze these layers or not.

To use pretrained embedding vectors from a ClassificationModel on ml4ir with a RankingModel:

initialize_layers_dict = {
    "query_text_bytes_embedding" : "models/activate_demo/bytes_embedding.npz"
}
freeze_layers_list = ["query_text_bytes_embedding"]
ranking_model: RelevanceModel = RankingModel(
                                    feature_config=feature_config,
                                    tfrecord_type=TFRecordTypeKey.SEQUENCE_EXAMPLE,
                                    scorer=scorer,
                                    metrics=metrics,
                                    optimizer=optimizer,
                                    initialize_layers_dict=initialize_layers_dict,
                                    freeze_layers_list=freeze_layers_list,
                                    file_io=file_io,
                                    logger=logger,
                                )





The model can be trained, evaluated and saved as usual after this step.




          

      

      

    

  

    
      
          
            
  
Running Kfold Cross Validation

ml4ir allows to run in a K-fold Cross validation mode. This mode reads the data the same way
as the normal “non K-fold” mode and merges the data sets training, validation and test (if specified) together.
Then according to the specified number of folds the merged data set is split among the training, validation and test sets.

You can control the K-fold mode by specifying three additional command line arguments.


	kfold




The number of folds for K-fold Cross Validation. Must be > 2 if testset is included in folds and > 1 otherwise.


	include_testset_in_kfold




Whether to merge the testset with the training and validation sets and perform kfold on the merged dataset.


	monitor_metric




Metric to use for post Kfold CV analysis.

Example

--kfold 5
--kfold_analysis_metrics MRR
--include_testset_in_kfold False





This would split the dataset into 5 folds: f1, f2, f3, f4 and f5 then the following would be how Kfolds cross validation:
iteration 1: validation set= f1, training set=[f2,f3,f4,f5]

iteration 2: validation set= f2, training set=[f1,f3,f4,f5]

iteration 3: validation set= f3, training set=[f1,f2,f4,f5]

iteration 4: validation set= f4, training set=[f1,f2,f3,f5]

iteration 5: validation set= f5, training set=[f1,f2,f3,f4]

Example

--kfold 5
--kfold_analysis_metrics MRR
--include_testset_in_kfold True





This would split the dataset into 5 folds: f1, f2, f3, f4 and f5 then the following would be how Kfolds cross validation:
iteration 1: validation set= f1, test set = f2 , training set=[f3,f4,f5]

iteration 2: validation set= f2, test set = f3, training set=[f1,f4,f5]

iteration 3: validation set= f3, test set = f4, training set=[f1,f2,f5]

iteration 4: validation set= f4, test set = f5, training set=[f1,f2,f3]

iteration 4: validation set= f5, test set = f1, training set=[f2,f3,f4]




          

      

      

    

  

    
      
          
            
  
API Documentation



	Pipelines
	RelevancePipeline

	RankingPipeline

	ClassificationPipeline





	Data Loaders and Helpers
	RelevanceDataset

	tfrecord_reader

	csv_reader

	tfrecord_writer





	Relevance Models
	RelevanceModel

	RankingModel





	Feature Configuration
	FeatureConfig

	ExampleFeatureConfig

	SequenceExampleFeatureConfig





	Losses
	RelevanceLossBase

	SigmoidCrossEntropy

	RankOneListNet

	CategoricalCrossEntropy





	Metrics
	MeanReciprocalRank

	AverageClickRank

	CategoricalAccuracy

	Top5CategoricalAccuracy





	Feature Processing

	Feature Transformation
	Categorical Feature Transformations

	Sequence Feature Transformations

	Tensorflow Native Operations





	Interaction Model
	InteractionModel

	UnivariateInteractionModel

	feature_layer





	Scorer
	ScorerBase

	RelevanceScorer





	File I/O Utilities
	FileIO

	LocalIO

	SparkIO












          

      

      

    

  

    
      
          
            
  
Pipelines


RelevancePipeline


	
class ml4ir.base.pipeline.RelevancePipeline(args: argparse.Namespace)

	Bases: object

Base class that defines a pipeline to train, evaluate and save
a RelevanceModel using ml4ir

Constructor to create a RelevancePipeline object to train, evaluate
and save a model on ml4ir.
This method sets up data, logs, models directories, file handlers used.
The method also loads and sets up the FeatureConfig for the model training
pipeline


	Parameters

	args (argparse Namespace) – arguments to be used with the pipeline.
Typically, passed from command line arguments






	
setup_logging() → logging.Logger

	Set up the logging utilities for the training pipeline
Additionally, removes pre existing job status files






	
set_seeds(reset_graph=True)

	Set the random seeds for tensorflow and numpy in order to
replicate results


	Parameters

	reset_graph (bool) – Reset the tensorflow graph and clears the keras session










	
get_relevance_dataset(preprocessing_keys_to_fns={}) → ml4ir.base.data.relevance_dataset.RelevanceDataset

	Create RelevanceDataset object by loading train, test data as tensorflow datasets


	Parameters

	preprocessing_keys_to_fns (dict of (str, function)) – dictionary of function names mapped to function definitions
that can now be used for preprocessing while loading the
TFRecordDataset to create the RelevanceDataset object



	Returns

	RelevanceDataset object that can be used for training and evaluating
the model



	Return type

	RelevanceDataset object





Notes

Override this method to create custom dataset objects






	
get_kfold_relevance_dataset(num_folds, include_testset_in_kfold, read_data_sets, preprocessing_keys_to_fns={}) → ml4ir.base.data.relevance_dataset.RelevanceDataset

	Create RelevanceDataset object by loading train, test data as tensorflow datasets


	Parameters

	
	num_folds (int) – number of folds in kfold


	include_testset_in_kfold (bool) – whether to include the testset in the folds


	read_data_sets (bool) – whether to call create_dataset which reads data from files.


	preprocessing_keys_to_fns (dict of (str, function)) – dictionary of function names mapped to function definitions
that can now be used for preprocessing while loading the
TFRecordDataset to create the RelevanceDataset object






	Returns

	RelevanceDataset object that can be used for training and evaluating
the model



	Return type

	KfoldRelevanceDataset object





Notes

Override this method to create custom dataset objects






	
get_relevance_model_cls()

	Fetch the class of the RelevanceModel to be used for the ml4ir pipeline


	Returns

	



	Return type

	RelevanceModel class










	
get_loss()

	Get the primary loss function to be used with the RelevanceModel


	Returns

	



	Return type

	RelevanceLossBase object










	
get_aux_loss()

	Get the auxiliary loss function to be used with the RelevanceModel


	Returns

	



	Return type

	RelevanceLossBase object










	
static get_metrics(metrics_keys: List[str]) → List[Union[keras.metrics.base_metric.Metric, str]]

	Get the list of keras metrics to be used with the RelevanceModel


	Parameters

	metrics_keys (List of str) – List of strings indicating the metrics to instantiate and retrieve



	Returns

	



	Return type

	list of keras Metric objects










	
get_relevance_model(feature_layer_keys_to_fns={}) → ml4ir.base.model.relevance_model.RelevanceModel

	Creates a RankingModel that can be used for training and evaluating
:param feature_layer_keys_to_fns: dictionary of function names mapped to tensorflow compatible


function definitions that can now be used in the InteractionModel
as a feature function to transform input features





	Returns

	RankingModel that can be used for training and evaluating
a ranking model



	Return type

	RankingModel





Notes

Override this method to create custom loss, scorer, model objects






	
create_pipeline_for_kfold(args)

	




	
run()

	Run the pipeline to train, evaluate and save the model. It also runs the pipeline in kfold cross validation
mode if specified.


	Returns

	Experiment tracking dictionary with metrics and metadata for the run.
Used for model selection and hyperparameter optimization



	Return type

	dict





Notes

Also populates a experiment tracking dictionary containing
the metadata, model architecture and metrics generated by the model






	
run_pipeline(relevance_dataset=None)

	Run the pipeline to train, evaluate and save the model.


	Parameters

	relevance_dataset (RelevanceDataset) – RelevanceDataset used for running the pipeline. If none, the relevance dataset will be created.



	Returns

	Experiment tracking dictionary with metrics and metadata for the run.
Used for model selection and hyperparameter optimization



	Return type

	dict





Notes

Also populates a experiment tracking dictionary containing
the metadata, model architecture and metrics generated by the model






	
pre_processing_step()

	Performs arbitrary pre-processing steps such as copying or transforming data that the rest of the code can not
accommodate. It serves as a placeholder without an explicit implementation (returns self) in the base pipeline.
We expect that users can extend it in their custom pipelines.






	
post_training_step()

	Performs arbitrary post-training steps such as copying or transforming data that the rest of the code can not
accommodate. It serves as a placeholder without an explicit implementation (returns self) in the base pipeline.
We expect that users can extend it in their custom pipelines.






	
finish(job_status, job_info)

	Wrap up the model training pipeline.
Performs the following actions



	save a job status file as _SUCCESS or _FAILURE to indicate job status.


	delete temp data and models directories


	if using spark IO, transfers models and logs directories to HDFS location from local directories


	log overall run time of ml4ir job








	Parameters

	
	job_status (str) – Tuple with first element _SUCCESS or _FAILURE
second element


	job_info (str) – for _SUCCESS, is experiment tracking metrics and metadata
for _FAILURE, is stacktrace of failure


















RankingPipeline


	
class ml4ir.applications.ranking.pipeline.RankingPipeline(args: argparse.Namespace)

	Bases: ml4ir.base.pipeline.RelevancePipeline

Base class that defines a pipeline to train, evaluate and save
a RankingModel using ml4ir

Constructor to create a RelevancePipeline object to train, evaluate
and save a model on ml4ir.
This method sets up data, logs, models directories, file handlers used.
The method also loads and sets up the FeatureConfig for the model training
pipeline
:param args: arguments to be used with the pipeline.


Typically, passed from command line arguments








	
get_relevance_model_cls()

	Fetch the class of the RelevanceModel to be used for the ml4ir pipeline
:returns:
:rtype: RelevanceModel class






	
get_loss()

	Get the primary loss function to be used with the RelevanceModel


	Returns

	



	Return type

	RelevanceLossBase object










	
get_aux_loss()

	Get the auxiliary loss function to be used with the RelevanceModel


	Returns

	



	Return type

	RelevanceLossBase object










	
static get_metrics(metrics_keys: List[str]) → List[Union[keras.metrics.base_metric.Metric, str]]

	Get the list of keras metrics to be used with the RelevanceModel


	Parameters

	metrics_keys (List of str) – List of strings indicating the metrics to instantiate and retrieve



	Returns

	



	Return type

	list of keras Metric objects










	
validate_args()

	Validate the arguments to be used with RelevancePipeline






	
create_pipeline_for_kfold(args)

	Create a RankingPipeline object used in running kfold cross validation.






	
kfold_analysis(base_logs_dir, run_id, num_folds, pvalue_threshold=0.1, metrics=None)

	Aggregate results of the k-fold runs and perform t-test on the results between old(prod model) and
new model’s w.r.t the specified metrics.
:param base_logs_dir: Total number of folds
:type base_logs_dir: int
:param run_id: current fold number
:type run_id: int
:param num_folds: Total number of folds
:type num_folds: int
:param pvalue_threshold: the threshold used for pvalue to assess significance
:type pvalue_threshold: float
:param metrics: List of metrics to include in the kfold analysis
:type metrics: list






	
run_kfold_analysis(logs_dir, run_id, num_folds, metrics)

	Running the kfold analysis for ranking.
Parameters:
———–
logs_dir: str


path to logs directory





	run_id: str

	string run_id



	num_folds: int

	number of folds



	metrics: list

	list of metrics to include in the kfold analysis





summary of the kfold analysis











ClassificationPipeline


	
class ml4ir.applications.classification.pipeline.ClassificationPipeline(args: argparse.Namespace)

	Bases: ml4ir.base.pipeline.RelevancePipeline

Base class that defines a pipeline to train, evaluate and save
a RelevanceModel for classification using ml4ir

Constructor to create a RelevancePipeline object to train, evaluate
and save a model on ml4ir.
This method sets up data, logs, models directories, file handlers used.
The method also loads and sets up the FeatureConfig for the model training
pipeline


	Parameters

	args (argparse Namespace) – arguments to be used with the pipeline.
Typically, passed from command line arguments






	
get_relevance_model_cls()

	Fetch the class of the RelevanceModel to be used for the ml4ir pipeline


	Returns

	



	Return type

	RelevanceModel class










	
get_loss()

	Get the primary loss function to be used with the RelevanceModel


	Returns

	



	Return type

	RelevanceLossBase object










	
static get_metrics(metrics_keys: List[str]) → List[Union[keras.metrics.base_metric.Metric, str]]

	Get the list of keras metrics to be used with the RelevanceModel


	Parameters

	metrics_keys (List of str) – List of strings indicating the metrics to instantiate and retrieve



	Returns

	



	Return type

	list of keras Metric objects










	
get_relevance_dataset(parse_tfrecord=True, preprocessing_keys_to_fns={}) → ml4ir.base.data.relevance_dataset.RelevanceDataset

	Create RelevanceDataset object by loading train, test data as tensorflow datasets
Defines a preprocessing feature function to one hot vectorize
classification labels


	Parameters

	preprocessing_keys_to_fns (dict of (str, function)) – dictionary of function names mapped to function definitions
that can now be used for preprocessing while loading the
TFRecordDataset to create the RelevanceDataset object



	Returns

	RelevanceDataset object that can be used for training and evaluating
the model



	Return type

	RelevanceDataset object





Notes

Override this method to create custom dataset objects






	
get_kfold_relevance_dataset(num_folds, include_testset_in_kfold, read_data_sets=False, parse_tfrecord=True, preprocessing_keys_to_fns={}) → ml4ir.base.data.kfold_relevance_dataset.KfoldRelevanceDataset

	Create KfoldRelevanceDataset object by loading train, test data as tensorflow datasets
Defines a preprocessing feature function to one hot vectorize
classification labels


	Parameters

	
	num_folds (int) – Number of folds in kfold CV


	include_testset_in_kfold (bool) – Whether to include testset in the folds


	read_data_sets (bool) – Whether to read datasets from disk


	preprocessing_keys_to_fns (dict of (str, function)) – dictionary of function names mapped to function definitions
that can now be used for preprocessing while loading the
TFRecordDataset to create the KfoldRelevanceDataset object






	Returns

	KfoldRelevanceDataset object that can be used for training and evaluating
the model in a kfold cross validation mode.



	Return type

	KfoldRelevanceDataset object





Notes

Override this method to create custom dataset objects






	
create_pipeline_for_kfold(args)

	Create a ClassificationPipeline object used in running kfold cross validation.






	
run_kfold_analysis(base_logs_dir, base_run_id, num_folds, metrics)

	











          

      

      

    

  

    
      
          
            
  
Data Loaders and Helpers


RelevanceDataset


	
class ml4ir.base.data.relevance_dataset.RelevanceDataset(data_dir: str, data_format: str, feature_config: ml4ir.base.features.feature_config.FeatureConfig, tfrecord_type: str, file_io: ml4ir.base.io.file_io.FileIO, max_sequence_size: int = 0, batch_size: int = 128, preprocessing_keys_to_fns: dict = {}, train_pcent_split: float = 0.8, val_pcent_split: float = -1, test_pcent_split: float = -1, use_part_files: bool = False, parse_tfrecord: bool = True, logger: Optional[logging.Logger] = None, keep_additional_info: int = 0, non_zero_features_only: int = 0, output_name: str = None)

	Bases: object

class to create/load TFRecordDataset for train, validation and test

Constructor method to instantiate a RelevanceDataset object
Loads and creates the TFRecordDataset for train, validation and test splits


	Parameters

	
	data_dir (str) – path to the directory containing train, validation and test data


	data_format ({"tfrecord", "csv", "libsvm"}) – type of data files to be converted into TFRecords and loaded as a TFRecordDataset


	feature_config (FeatureConfig object) – FeatureConfig object that defines the features to be loaded in the dataset
and the preprocessing functions to be applied to each of them


	tfrecord_type ({"example", "sequence_example"}) – Type of the TFRecord protobuf message to be used for TFRecordDataset


	file_io (FileIO object) – file I/O handler objects for reading and writing data


	max_sequence_size (int, optional) – maximum number of sequence to be used with a single SequenceExample proto message
The data will be appropriately padded or clipped to fit the max value specified


	batch_size (int, optional) – size of each data batch


	preprocessing_keys_to_fns (dict of (str, function), optional) – dictionary of function names mapped to function definitions
that can now be used for preprocessing while loading the
TFRecordDataset to create the RelevanceDataset object


	train_pcent_split (float, optional) – ratio of overall data to be used as training set


	val_pcent_split (float, optional) – ratio of overall data to be used as validation set


	test_pcent_split (float, optional) – ratio of overall data to be used as test set


	use_part_files (bool, optional) – load dataset from part files checked using “part-” prefix


	parse_tfrecord (bool, optional) – parse the TFRecord string from the dataset;
returns strings as is otherwise


	logger (Logger, optional) – logging handler for status messages


	output_name (str) – The name of tensorflow’s output node which carry the prediction score.








Notes


	Currently supports CSV, TFRecord and Libsvm data formats


	Does not support automatically splitting train, validation and test


	data_dir should contain train, validation and test directories with files within them





	
create_dataset(parse_tfrecord=True)

	Loads and creates train, validation and test datasets


	Parameters

	parse_tfrecord (bool) – parse the TFRecord string from the dataset;
returns strings as is otherwise










	
balance_classes()

	Balance class labels in the train dataset






	
train_val_test_split()

	Split the dataset into train, validation and test











tfrecord_reader


	
class ml4ir.base.data.tfrecord_reader.TFRecordParser(feature_config: ml4ir.base.features.feature_config.FeatureConfig, preprocessing_map: ml4ir.base.features.preprocessing.PreprocessingMap, required_fields_only: Optional[bool] = False)

	Bases: object

Base class for parsing TFRecord examples. This class consolidates the
parsing and feature extraction pipeline for both Example and SequenceExample
protobuf messages

Constructor method for instantiating a TFRecordParser object


	Parameters

	
	feature_config (FeatureConfig) – FeatureConfig object defining context and sequence feature information


	preprocessing_map (PreprocessingMap object) – Object mapping preprocessing feature function names to their definitons


	required_fields_only (bool, optional) – Whether to only use required fields from the feature_config









	
get_features_spec()

	Define the features spec from the feature_config.
The features spec will be used to parse the serialized TFRecord


	Returns

	feature specification dictionary that can be used to parse TFRecords



	Return type

	dict





Notes

For SequenceExample messages, this method returns a pair of dictionaries,
one each for context and sequence features.






	
extract_features_from_proto(proto)

	Parse the serialized proto string to extract features


	Parameters

	proto (tf.Tensor) – A scalar string tensor that is the serialized form of a TFRecord object



	Returns

	Dictionary of features extracted from the proto as per the features_spec



	Return type

	dict of Tensors





Notes

For SequenceExample proto messages, this function returns two dictionaries,
one for context and another for sequence feature tensors.
For Example proto messages, this function returns a single dictionary of feature tensors.






	
get_default_tensor(feature_info, sequence_size=0)

	Get the default tensor for a given feature configuration


	Parameters

	
	feature_info (dict) – Feature configuration information for the feature as specified in the feature_config


	sequence_size (int, optional) – Number of elements in the sequence of a SequenceExample






	Returns

	Tensor object that can be used as a default tensor if the expected feature
is missing from the TFRecord



	Return type

	tf.Tensor










	
get_feature(feature_info, extracted_features, sequence_size=0)

	Fetch the feature from the feature dictionary of extracted features


	Parameters

	
	feature_info (dict) – Feature configuration information for the feature as specified in the feature_config


	extracted_features (dict) – Dictionary of feature tensors extracted by parsing the serialized TFRecord


	sequence_size (int, optional) – Number of elements in the sequence of a SequenceExample






	Returns

	Feature tensor that is obtained from the extracted features for the given
feature_info



	Return type

	tf.Tensor










	
generate_and_add_mask(extracted_features, features_dict)

	Create a mask to identify padded values


	Parameters

	
	extracted_features (dict) – Dictionary of tensors extracted from the serialized TFRecord


	features_dict (dict) – Dictionary of tensors that will be used for model training/serving
as inputs to the model






	Returns

	
	features_dict (dict) – Dictionary of tensors that will be used for model training/serving updated
with the mask tensor if applicable


	sequence_size (int) – Number of elements in the sequence of the TFRecord















	
pad_feature(feature_tensor, feature_info)

	Pad the feature to the max_sequence_size in order to create
uniform data batches for training
:param feature_tensor: Feature tensor to be padded
:type feature_tensor: tf.Tensor
:param feature_info: Feature configuration information for the feature as specified in the feature_config
:type feature_info: dict


	Returns

	Feature tensor padded to the max_sequence_size



	Return type

	tf.Tensor










	
preprocess_feature(feature_tensor, feature_info)

	Preprocess feature based on the feature configuration


	Parameters

	
	feature_tensor (tf.Tensor) – input feature tensor to be preprocessed


	feature_info (dict) – Feature configuration information for the feature as specified in the feature_config






	Returns

	preprocessed tensor object



	Return type

	tf.Tensor





Notes

Only preprocessing functions part of the preprocessing_map
can be used in this function for preprocessing at data loading

Pass custom preprocessing functions while instantiating the
RelevanceDataset object with preprocessing_keys_to_fns argument






	
get_parse_fn() → tensorflow.python.eager.def_function.function

	Define a parsing function that will be used to load the TFRecordDataset
and create input features for the model.


	Returns

	Parsing function that takes in a serialized TFRecord protobuf
message and extracts a dictionary of feature tensors



	Return type

	tf.function





Notes

This function will also be used with the TFRecord serving signature in the
saved model.










	
class ml4ir.base.data.tfrecord_reader.TFRecordExampleParser(feature_config: ml4ir.base.features.feature_config.FeatureConfig, preprocessing_map: ml4ir.base.features.preprocessing.PreprocessingMap, required_fields_only: Optional[bool] = False)

	Bases: ml4ir.base.data.tfrecord_reader.TFRecordParser

Class for parsing Example TFRecord protobuf messages

Constructor method for instantiating a TFRecordParser object


	Parameters

	
	feature_config (FeatureConfig) – FeatureConfig object defining context and sequence feature information


	preprocessing_map (PreprocessingMap object) – Object mapping preprocessing feature function names to their definitons


	required_fields_only (bool, optional) – Whether to only use required fields from the feature_config









	
get_features_spec()

	Define the features spec from the feature_config.
This will be used to parse the serialized TFRecord


	Returns

	feature specification dictionary that can be used to parse TFRecords



	Return type

	dict










	
extract_features_from_proto(serialized)

	Parse the serialized proto string to extract features


	Parameters

	proto (tf.Tensor) – A scalar string tensor that is the serialized form of a TFRecord object



	Returns

	Dictionary of features extracted from the proto as per the features_spec



	Return type

	dict of Tensors










	
get_default_tensor(feature_info, sequence_size=0)

	Get the default tensor for a given feature configuration


	Parameters

	
	feature_info (dict) – Feature configuration information for the feature as specified in the feature_config


	sequence_size (int, optional) – Number of elements in the sequence of a SequenceExample






	Returns

	Tensor object that can be used as a default tensor if the expected feature
is missing from the TFRecord



	Return type

	tf.Tensor










	
get_feature(feature_info, extracted_features, sequence_size=0)

	Fetch the feature from the feature dictionary of extracted features


	Parameters

	
	feature_info (dict) – Feature configuration information for the feature as specified in the feature_config


	extracted_features (dict) – Dictionary of feature tensors extracted by parsing the serialized TFRecord


	sequence_size (int, optional) – Number of elements in the sequence of a SequenceExample






	Returns

	Feature tensor that is obtained from the extracted features for the given
feature_info



	Return type

	tf.Tensor










	
generate_and_add_mask(extracted_features, features_dict)

	Create a mask to identify padded values


	Parameters

	
	extracted_features (dict) – Dictionary of tensors extracted from the serialized TFRecord


	features_dict (dict) – Dictionary of tensors that will be used for model training/serving
as inputs to the model






	Returns

	
	features_dict (dict) – Dictionary of tensors that will be used for model training/serving updated
with the mask tensor if applicable


	sequence_size (int) – Number of elements in the sequence of the TFRecord















	
pad_feature(feature_tensor, feature_info)

	Pad the feature to the max_sequence_size in order to create
uniform data batches for training
:param feature_tensor: Feature tensor to be padded
:type feature_tensor: tf.Tensor
:param feature_info: Feature configuration information for the feature as specified in the feature_config
:type feature_info: dict


	Returns

	Feature tensor padded to the max_sequence_size



	Return type

	tf.Tensor














	
class ml4ir.base.data.tfrecord_reader.TFRecordSequenceExampleParser(feature_config: ml4ir.base.features.feature_config.FeatureConfig, preprocessing_map: ml4ir.base.features.preprocessing.PreprocessingMap, required_fields_only: Optional[bool] = False, pad_sequence: Optional[bool] = True, max_sequence_size: Optional[int] = 25, output_name: Optional[str] = None)

	Bases: ml4ir.base.data.tfrecord_reader.TFRecordParser

Constructor method for instantiating a TFRecordParser object


	Parameters

	
	feature_config (FeatureConfig) – FeatureConfig object defining context and sequence feature information


	preprocessing_map (PreprocessingMap object) – Object mapping preprocessing feature function names to their definitons


	required_fields_only (bool, optional) – Whether to only use required fields from the feature_config


	pad_sequence (bool, optional) – Whether to pad sequence


	max_sequence_size (int, optional) – Maximum number of sequence per query. Used for padding


	output_name (str) – The name of tensorflow’s output node which carry the prediction score









	
get_features_spec()

	Define the features spec from the feature_config.
This will be used to parse the serialized TFRecord


	Returns

	
	dict – Feature specification dictionary that can be used to parse
Context features from the serialized SequenceExample


	dict – Feature specification dictionary that can be used to parse
Sequence features (or feature lists) from the serialized SequenceExample















	
extract_features_from_proto(serialized)

	Parse the serialized proto string to extract features


	Parameters

	proto (tf.Tensor) – A scalar string tensor that is the serialized form of a TFRecord object



	Returns

	
	dict of Tensors – Dictionary of context feature tensors extracted from the proto
as per the features_spec


	dict of Tensors – Dictionary of sequence feature tensors extracted from the proto
as per the features_spec















	
get_default_tensor(feature_info, sequence_size)

	Get the default tensor for a given feature configuration
:param feature_info: Feature configuration information for the feature as specified in the feature_config
:type feature_info: dict
:param sequence_size: Number of elements in the sequence of a SequenceExample
:type sequence_size: int, optional


	Returns

	Tensor object that can be used as a default tensor if the expected feature
is missing from the TFRecord



	Return type

	tf.Tensor










	
get_feature(feature_info, extracted_features, sequence_size)

	Fetch the feature from the feature dictionary of extracted features
:param feature_info: Feature configuration information for the feature as specified in the feature_config
:type feature_info: dict
:param extracted_features: Dictionary of feature tensors extracted by parsing the serialized TFRecord
:type extracted_features: dict
:param sequence_size: Number of elements in the sequence of a SequenceExample
:type sequence_size: int, optional


	Returns

	Feature tensor that is obtained from the extracted features for the given
feature_info



	Return type

	tf.Tensor










	
generate_and_add_mask(extracted_features, features_dict)

	Create a mask to identify padded values


	Parameters

	
	extracted_features (dict) – Dictionary of tensors extracted from the serialized TFRecord


	features_dict (dict) – Dictionary of tensors that will be used for model training/serving
as inputs to the model






	Returns

	
	features_dict (dict) – Dictionary of tensors that will be used for model training/serving updated
with the mask tensor if applicable


	sequence_size (int) – Number of elements in the sequence of the TFRecord















	
pad_feature(feature_tensor, feature_info)

	Pad the feature to the max_sequence_size in order to create
uniform data batches for training
:param feature_tensor: Feature tensor to be padded
:type feature_tensor: tf.Tensor
:param feature_info: Feature configuration information for the feature as specified in the feature_config
:type feature_info: dict


	Returns

	Feature tensor padded to the max_sequence_size



	Return type

	tf.Tensor














	
ml4ir.base.data.tfrecord_reader.get_parse_fn(tfrecord_type: str, feature_config: ml4ir.base.features.feature_config.FeatureConfig, preprocessing_keys_to_fns: dict, max_sequence_size: int = 0, required_fields_only: bool = False, pad_sequence: bool = True, output_name: str = None) → tensorflow.python.eager.def_function.function

	Create a parsing function to extract features from serialized TFRecord data
using the definition from the FeatureConfig


	Parameters

	
	tfrecord_type ({"example", "sequence_example"}) – Type of TFRecord data to be loaded into a dataset


	feature_config (FeatureConfig object) – FeatureConfig object defining the features to be extracted


	preprocessing_keys_to_fns (dict of(str, function), optional) – dictionary of function names mapped to function definitions
that can now be used for preprocessing while loading the
TFRecordDataset to create the RelevanceDataset object


	max_sequence_size (int) – Maximum number of sequence per query. Used for padding


	required_fields_only (bool, optional) – Whether to only use required fields from the feature_config


	pad_sequence (bool) – Whether to pad sequence


	output_name (str) – The name of tensorflow’s output node which carry the prediction score






	Returns

	Parsing function that takes in a serialized SequenceExample or Example message
and extracts a dictionary of feature tensors



	Return type

	tf.function










	
ml4ir.base.data.tfrecord_reader.read(data_dir: str, feature_config: ml4ir.base.features.feature_config.FeatureConfig, tfrecord_type: str, file_io: ml4ir.base.io.file_io.FileIO, max_sequence_size: int = 0, batch_size: int = 0, preprocessing_keys_to_fns: dict = {}, parse_tfrecord: bool = True, use_part_files: bool = False, logger: logging.Logger = None, **kwargs) → tensorflow.python.data.ops.readers.TFRecordDatasetV2

	Extract features by reading and parsing TFRecord data
and converting into a TFRecordDataset using the FeatureConfig


	Parameters

	
	data_dir (str) – path to the directory containing train, validation and test data


	feature_config (FeatureConfig object) – FeatureConfig object that defines the features to be loaded in the dataset
and the preprocessing functions to be applied to each of them


	tfrecord_type ({"example", "sequence_example"}) – Type of the TFRecord protobuf message to be used for TFRecordDataset


	file_io (FileIO object) – file I/O handler objects for reading and writing data


	max_sequence_size (int, optional) – maximum number of sequence to be used with a single SequenceExample proto message
The data will be appropriately padded or clipped to fit the max value specified


	batch_size (int, optional) – size of each data batch


	preprocessing_keys_to_fns (dict of(str, function), optional) – dictionary of function names mapped to function definitions
that can now be used for preprocessing while loading the
TFRecordDataset to create the RelevanceDataset object


	use_part_files (bool, optional) – load dataset from part files checked using “part-” prefix


	parse_tfrecord (bool, optional) – parse the TFRecord string from the dataset;
returns strings as is otherwise


	logger (Logger, optional) – logging handler for status messages






	Returns

	TFRecordDataset loaded from the data_dir specified using the FeatureConfig



	Return type

	TFRecordDataset











csv_reader


	
ml4ir.base.data.csv_reader.read(data_dir: str, feature_config: ml4ir.base.features.feature_config.FeatureConfig, tfrecord_type: str, tfrecord_dir: str, file_io: ml4ir.base.io.file_io.FileIO, batch_size: int = 128, preprocessing_keys_to_fns: dict = {}, use_part_files: bool = False, max_sequence_size: int = 25, parse_tfrecord: bool = True, logger=None, **kwargs) → tensorflow.python.data.ops.readers.TFRecordDatasetV2

	Create a TFRecordDataset from directory of CSV files using the FeatureConfig


	Current execution plan:

	
	Load CSVs as pandas dataframes


	Convert each query into tf.train.SequenceExample protobufs


	Write the protobufs into a .tfrecord file


	Load .tfrecord file into a TFRecordDataset and parse the protobufs









	Parameters

	
	data_dir (str) – Path to directory containing csv files to read


	feature_config (FeatureConfig object) – FeatureConfig object that defines the features to be loaded in the dataset
and the preprocessing functions to be applied to each of them


	tfrecord_dir (str) – Path to directory where the serialized .tfrecord files will be stored


	batch_size (int) – value specifying the size of the data batch


	use_part_files (bool) – load dataset from part files checked using “part-” prefix


	max_sequence_size (int) – value specifying max number of records per query


	logger (Logger object) – logging handler to print and save status messages






	Returns

	tensorflow TFRecordDataset loaded from the CSV file



	Return type

	TFRecordDataset object











tfrecord_writer

Writes data in Example or SequenceExample protobuf (tfrecords) format.

To use it as a standalone script, refer to the argument spec
at the bottom

Notes

Setting --keep-single-files writes one tfrecord file
for each CSV file (better performance). If not set,
joins everything to a single tfrecord file.

Examples

Syntax to convert a single or several CSVs:

>>> python ml4ir/base/data/tfrecord_writer.py \
... sequence_example|example \
... --csv-files <SPACE_SEPARATED_PATHS_TO_CSV_FILES> \
... --out-dir <PATH_TO_OUTPUT_DIR> \
... --feature_config <PATH_TO_YAML_FEATURE_CONFIG> \
... --keep-single-files





or to convert all CSV files in a dir

>>> python ml4ir/base/data/tfrecord_writer.py \
... sequence_example|example \
... --csv-dir <DIR_WITH_CSVs> \
... --out-dir <PATH_TO_OUTPUT_DIR> \
... --feature_config <PATH_TO_YAML_FEATURE_CONFIG> \
... --keep-single-files





Usage example:

>>> python ml4ir/base/data/tfrecord_writer.py \
... sequence_example \
... --csv-files /tmp/d.csv /tmp/d2.csv \
... --out-dir /tmp \
... --feature-config /tmp/fconfig.yaml \
... --keep-single-files






	
ml4ir.base.data.tfrecord_writer.write_from_files(csv_files: List[str], tfrecord_file: str, feature_config: ml4ir.base.features.feature_config.FeatureConfig, tfrecord_type: str, file_io: ml4ir.base.io.file_io.FileIO, logger: logging.Logger = None)

	Converts data from CSV files into tfrecord files


	Parameters

	
	csv_files (list of str) – list of csv file paths to read data from


	tfrecord_file (str) – tfrecord file path to write the output


	feature_config (FeatureConfig) – FeatureConfig object that defines the features to be loaded in the dataset
and the preprocessing functions to be applied to each of them


	tfrecord_type ({"example", "sequence_example"}) – Type of the TFRecord protobuf message to be used for TFRecordDataset


	file_io (FileIO object) – FileIO handler object for reading and writing files


	logger (Logger, optional) – logging handler for status messages













	
ml4ir.base.data.tfrecord_writer.write_from_df(df: pandas.core.frame.DataFrame, tfrecord_file: str, feature_config: ml4ir.base.features.feature_config.FeatureConfig, tfrecord_type: str, logger: logging.Logger = None)

	Converts data from CSV files into tfrecord files

Parameters
df : pd.DataFrame


pandas DataFrame to be converted to TFRecordDataset





	tfrecord_filestr

	tfrecord file path to write the output



	feature_configFeatureConfig

	FeatureConfig object that defines the features to be loaded in the dataset
and the preprocessing functions to be applied to each of them



	tfrecord_type{“example”, “sequence_example”}

	Type of the TFRecord protobuf message to be used for TFRecordDataset



	loggerLogger, optional

	logging handler for status messages













          

      

      

    

  

    
      
          
            
  
Relevance Models


RelevanceModel


	
class ml4ir.base.model.relevance_model.RelevanceModel(feature_config: ml4ir.base.features.feature_config.FeatureConfig, tfrecord_type: str, file_io: ml4ir.base.io.file_io.FileIO, scorer: Optional[ml4ir.base.model.scoring.scoring_model.RelevanceScorer] = None, metrics: List[Union[keras.metrics.base_metric.Metric, str]] = [], optimizer: Optional[keras.optimizers.optimizer_v2.optimizer_v2.OptimizerV2] = None, model_file: Optional[str] = None, initialize_layers_dict: dict = {}, freeze_layers_list: list = [], compile_keras_model: bool = False, output_name: str = 'score', logger=None, eval_config: dict = {})

	Bases: object

Constructor to instantiate a RelevanceModel that can be used for
training and evaluating the search ML task


	Parameters

	
	feature_config (FeatureConfig object) – FeatureConfig object that defines the features to be loaded in the dataset
and the preprocessing functions to be applied to each of them


	tfrecord_type ({"example", "sequence_example"}) – Type of the TFRecord protobuf message used for TFRecordDataset


	file_io (FileIO object) – file I/O handler objects for reading and writing data


	scorer (RelevanceScorer object) – Scorer object that wraps an InteractionModel and converts
input features into scores


	metrics (list) – List of keras Metric objects/strings that will be used for evaluating the trained model


	optimizer (Optimizer) – Tensorflow keras optimizer to be used for training the model


	model_file (str, optional) – Path to pretrained model file to be loaded for evaluation or retraining


	initialize_layers_dict (dict, optional) – Dictionary of tensorflow layer names mapped to the path of pretrained weights
Use this for transfer learning with pretrained weights


	freeze_layers_list (list, optional) – List of model layer names to be frozen
Use this for freezing pretrained weights from other ml4ir models


	compile_keras_model (bool, optional) – Whether the keras model loaded from disk should be compiled
with loss, metrics and an optimizer


	output_name (str, optional) – Name of the output tensorflow node that captures the score


	logger (Logger, optional) – logging handler for status messages


	eval_config (dict) – A dictionary of Evaluation config parameters









	
is_compiled = None

	Specify inputs to the model

Individual input nodes are defined for each feature
Each data point represents features for all records in a single query






	
classmethod from_relevance_scorer(feature_config: ml4ir.base.features.feature_config.FeatureConfig, interaction_model: ml4ir.base.model.scoring.interaction_model.InteractionModel, model_config: dict, loss: ml4ir.base.model.losses.loss_base.RelevanceLossBase, metrics: List[Union[keras.metrics.base_metric.Metric, str]], optimizer: keras.optimizers.optimizer_v2.optimizer_v2.OptimizerV2, tfrecord_type: str, file_io: ml4ir.base.io.file_io.FileIO, model_file: Optional[str] = None, initialize_layers_dict: dict = {}, freeze_layers_list: list = [], compile_keras_model: bool = False, output_name: str = 'score', logger=None)

	Create a RelevanceModel with default Scorer function
constructed from an InteractionModel


	Parameters

	
	feature_config (FeatureConfig object) – FeatureConfig object that defines the features to be loaded in the dataset
and the preprocessing functions to be applied to each of them


	tfrecord_type ({"example", "sequence_example"}) – Type of the TFRecord protobuf message used for TFRecordDataset


	file_io (FileIO object) – file I/O handler objects for reading and writing data


	interaction_model (InteractionModel object) – InteractionModel object that converts input features into a
dense feature representation


	loss (RelevanceLossBase object) – Loss object defining the final activation layer and the loss function


	metrics (list) – List of keras Metric classes that will be used for evaluating the trained model


	optimizer (Optimizer) – Tensorflow keras optimizer to be used for training the model


	model_file (str, optional) – Path to pretrained model file to be loaded for evaluation or retraining


	initialize_layers_dict (dict, optional) – Dictionary of tensorflow layer names mapped to the path of pretrained weights
Use this for transfer learning with pretrained weights


	freeze_layers_list (list, optional) – List of model layer names to be frozen
Use this for freezing pretrained weights from other ml4ir models


	compile_keras_model (bool, optional) – Whether the keras model loaded from disk should be compiled
with loss, metrics and an optimizer


	output_name (str, optional) – Name of the output tensorflow node that captures the score


	logger (Logger, optional) – logging handler for status messages






	Returns

	RelevanceModel object with a default scorer build with a custom
InteractionModel



	Return type

	RelevanceModel










	
classmethod from_univariate_interaction_model(model_config, feature_config: ml4ir.base.features.feature_config.FeatureConfig, tfrecord_type: str, loss: ml4ir.base.model.losses.loss_base.RelevanceLossBase, metrics: List[Union[keras.metrics.base_metric.Metric, str]], optimizer: keras.optimizers.optimizer_v2.optimizer_v2.OptimizerV2, feature_layer_keys_to_fns: dict = {}, model_file: Optional[str] = None, initialize_layers_dict: dict = {}, freeze_layers_list: list = [], compile_keras_model: bool = False, output_name: str = 'score', max_sequence_size: int = 0, file_io: ml4ir.base.io.file_io.FileIO = None, logger=None)

	Create a RelevanceModel with default UnivariateInteractionModel


	Parameters

	
	feature_config (FeatureConfig object) – FeatureConfig object that defines the features to be loaded in the dataset
and the preprocessing functions to be applied to each of them


	model_config (dict) – dictionary defining the dense model architecture


	tfrecord_type ({"example", "sequence_example"}) – Type of the TFRecord protobuf message used for TFRecordDataset


	file_io (FileIO object) – file I/O handler objects for reading and writing data


	loss (RelevanceLossBase object) – Loss object defining the final activation layer and the loss function


	metrics (list) – List of keras Metric classes that will be used for evaluating the trained model


	optimizer (Optimizer) – Tensorflow keras optimizer to be used for training the model


	feature_layer_keys_to_fns (dict) – Dictionary of custom feature transformation functions to be applied
on the input features as part of the InteractionModel


	model_file (str, optional) – Path to pretrained model file to be loaded for evaluation or retraining


	initialize_layers_dict (dict, optional) – Dictionary of tensorflow layer names mapped to the path of pretrained weights
Use this for transfer learning with pretrained weights


	freeze_layers_list (list, optional) – List of model layer names to be frozen
Use this for freezing pretrained weights from other ml4ir models


	compile_keras_model (bool, optional) – Whether the keras model loaded from disk should be compiled
with loss, metrics and an optimizer


	output_name (str, optional) – Name of the output tensorflow node that captures the score


	max_sequence_size (int, optional) – Maximum length of the sequence to be used for SequenceExample protobuf objects


	logger (Logger, optional) – logging handler for status messages






	Returns

	RelevanceModel object with a UnivariateInteractionModel



	Return type

	RelevanceModel










	
build(dataset: ml4ir.base.data.relevance_dataset.RelevanceDataset)

	Build the model layers and connect them to form a network


	Parameters

	dataset (RelevanceDataset) – RelevanceDataset object used to initialize the weights and input/output
spec for the network





Notes

Because we build the model using keras model subclassing API, it has no understanding
of the actual inputs to expect. So we do one forward pass to initialize all the internal
weights and connections






	
define_scheduler_as_callback(monitor_metric, model_config)

	Adding reduce lr on plateau as a callback if specified


	Parameters

	
	monitor_metric (string) – The metric to be monitored by the callback


	model_config (dict) – dictionary defining the dense model architecture






	Returns

	The created scheduler callback object.



	Return type

	reduce_lr










	
fit(dataset: ml4ir.base.data.relevance_dataset.RelevanceDataset, num_epochs: int, models_dir: str, logs_dir: Optional[str] = None, logging_frequency: int = 25, monitor_metric: str = '', monitor_mode: str = '', patience=2)

	Trains model for defined number of epochs
and returns the training and validation metrics as a dictionary


	Parameters

	
	dataset (RelevanceDataset object) – RelevanceDataset object to be used for training and validation


	num_epochs (int) – Value specifying number of epochs to train for


	models_dir (str) – Directory to save model checkpoints


	logs_dir (str, optional) – Directory to save model logs
If set to False, no progress logs will be written


	logging_frequency (int, optional) – Every #batches to log results


	monitor_metric (str, optional) – Name of the metric to monitor for early stopping, checkpointing


	monitor_mode ({"max", "min"}) – Whether to maximize or minimize the monitoring metric


	patience (int) – Number of epochs to wait before early stopping






	Returns

	train_metrics – Train and validation metrics in a single dictionary
where key is metric name and value is floating point metric value.
This dictionary will be used for experiment tracking for each ml4ir run



	Return type

	dict










	
predict(test_dataset: tensorflow.python.data.ops.readers.TFRecordDatasetV2, inference_signature: str = 'serving_default', additional_features: dict = {}, logs_dir: Optional[str] = None, logging_frequency: int = 25)

	Predict the scores on the test dataset using the trained model


	Parameters

	
	test_dataset (Dataset object) – Dataset object for which predictions are to be made


	inference_signature (str, optional) – If using a SavedModel for prediction, specify the inference signature to be used for computing scores


	additional_features (dict, optional) – Dictionary containing new feature name and function definition to
compute them. Use this to compute additional features from the scores.
For example, converting ranking scores for each document into ranks for
the query


	logs_dir (str, optional) – Path to directory to save logs


	logging_frequency (int) – Value representing how often(in batches) to log status






	Returns

	pandas DataFrame containing the predictions on the test dataset
made with the RelevanceModel



	Return type

	pd.DataFrame










	
evaluate(test_dataset: tensorflow.python.data.ops.readers.TFRecordDatasetV2, inference_signature: str = None, additional_features: dict = {}, group_metrics_min_queries: int = 50, logs_dir: Optional[str] = None, logging_frequency: int = 25, compute_intermediate_stats: bool = True)

	Evaluate the RelevanceModel


	Parameters

	
	test_dataset (an instance of tf.data.dataset) – 


	inference_signature (str, optional) – If using a SavedModel for prediction, specify the inference signature to be used for computing scores


	additional_features (dict, optional) – Dictionary containing new feature name and function definition to
compute them. Use this to compute additional features from the scores.
For example, converting ranking scores for each document into ranks for
the query


	group_metrics_min_queries (int, optional) – Minimum count threshold per group to be considered for computing
groupwise metrics


	logs_dir (str, optional) – Path to directory to save logs


	logging_frequency (int) – Value representing how often(in batches) to log status


	compute_intermediate_stats (bool) – Determines if group metrics and other intermediate stats on the test set should be computed






	Returns

	
	df_overall_metrics (pd.DataFrame object) – pd.DataFrame containing overall metrics


	df_groupwise_metrics (pd.DataFrame object) – pd.DataFrame containing groupwise metrics if
group_metric_keys are defined in the FeatureConfig


	metrics_dict (dict) – metrics as a dictionary of metric names mapping to values










Notes

You can directly do a model.evaluate() only if the keras model is compiled

Override this method to implement your own evaluation metrics.






	
run_ttest(mean, variance, n, ttest_pvalue_threshold)

	Compute the paired t-test statistic and its p-value given mean, standard deviation and sample count
:param mean: The mean of the rank differences for the entire dataset
:type mean: float
:param variance: The variance of the rank differences for the entire dataset
:type variance: float
:param n: The number of samples in the entire dataset
:type n: int
:param ttest_pvalue_threshold: P-value threshold for student t-test
:type ttest_pvalue_threshold: float
:param metrics_dict: dictionary of metrics to keep track
:type metrics_dict: dict


	Returns

	t_test_metrics_dict – A dictionary with the t-test metrics recorded.



	Return type

	Dictionary










	
save(models_dir: str, preprocessing_keys_to_fns={}, postprocessing_fn=None, required_fields_only: bool = True, pad_sequence: bool = False, sub_dir: str = 'final', dataset: Optional[ml4ir.base.data.relevance_dataset.RelevanceDataset] = None, experiment_details: Optional[dict] = None)

	Save the RelevanceModel as a tensorflow SavedModel to the models_dir

There are two different serving signatures currently used to save the model:


	default: default keras model without any pre/post processing wrapper


	
	tfrecord: serving signature that allows keras model to be served using TFRecord proto messages.

	Allows definition of custom pre/post processing logic









Additionally, each model layer is also saved as a separate numpy zipped
array to enable transfer learning with other ml4ir models.


	Parameters

	
	models_dir (str) – path to directory to save the model


	preprocessing_keys_to_fns (dict) – dictionary mapping function names to tf.functions that should be
saved in the preprocessing step of the tfrecord serving signature


	postprocessing_fn (function) – custom tensorflow compatible postprocessing function to be used at serving time.
Saved as part of the postprocessing layer of the tfrecord serving signature


	required_fields_only (bool) – boolean value defining if only required fields
need to be added to the tfrecord parsing function at serving time


	pad_sequence (bool, optional) – Value defining if sequences should be padded for SequenceExample proto inputs at serving time.
Set this to False if you want to not handle padded scores.


	sub_dir (str, optional) – sub directory name to save the model into


	dataset (RelevanceDataset object) – RelevanceDataset object that can optionally be passed to be used by downstream jobs
that want to save the data along with the model.
Note that this feature is currently unimplemented and is upto the users to override
and customize.


	experiment_details (dict) – Dictionary containing metadata and results about the current experiment








Notes

All the functions passed under preprocessing_keys_to_fns here must be
serializable tensor graph operations






	
load(model_file: str) → keras.engine.training.Model

	Loads model from the SavedModel file specified


	Parameters

	model_file (str) – path to file with saved tf keras model



	Returns

	Tensorflow keras model loaded from file



	Return type

	tf.keras.Model





Notes

Retraining currently not supported!
Would require compiling the model with the right loss and optimizer states






	
load_weights(model_file: str)

	Load saved model with compile=False


	Parameters

	model_file (str) – path to file with saved tf keras model










	
calibrate(relevance_dataset, logger, logs_dir_local, **kwargs) → Tuple[numpy.ndarray, ...]

	Calibrate model with temperature scaling
:param relevance_dataset: RelevanceDataset object to be used for training and evaluating temperature scaling
:type relevance_dataset: RelevanceDataset
:param logger: Logger object to log events
:type logger: Logger
:param logs_dir_local: path to save the calibration results. (zipped csv file containing original


probabilities, calibrated probabilities, …)





	Returns

	
	Union[np.ndarray, Tuple[np.ndarray, …]]


	optimizer output containing temperature value learned during temperature scaling















	
add_temperature_layer(temperature: float = 1.0, layer_name: str = 'temperature_layer')

	Add temperature layer to the input of last activation (softmax) layer
:param self: input RelevanceModel object that its last layer inputs will be divided by a


temperature value





	Parameters

	
	temperature (float) – a scalar value to scale the last activation layer inputs


	layer_name (str) – name of the temperature scaling layer






	Returns

	
	RelevanceModel


	updated RelevanceModel object with temperature




















RankingModel


	
class ml4ir.applications.ranking.model.ranking_model.RankingModel(feature_config: ml4ir.base.features.feature_config.FeatureConfig, tfrecord_type: str, file_io: ml4ir.base.io.file_io.FileIO, scorer: Optional[ml4ir.base.model.scoring.scoring_model.RelevanceScorer] = None, metrics: List[Union[keras.metrics.base_metric.Metric, str]] = [], optimizer: Optional[keras.optimizers.optimizer_v2.optimizer_v2.OptimizerV2] = None, model_file: Optional[str] = None, initialize_layers_dict: dict = {}, freeze_layers_list: list = [], compile_keras_model: bool = False, output_name: str = 'score', logger=None, eval_config: dict = {})

	Bases: ml4ir.base.model.relevance_model.RelevanceModel

Constructor to instantiate a RelevanceModel that can be used for
training and evaluating the search ML task


	Parameters

	
	feature_config (FeatureConfig object) – FeatureConfig object that defines the features to be loaded in the dataset
and the preprocessing functions to be applied to each of them


	tfrecord_type ({"example", "sequence_example"}) – Type of the TFRecord protobuf message used for TFRecordDataset


	file_io (FileIO object) – file I/O handler objects for reading and writing data


	scorer (RelevanceScorer object) – Scorer object that wraps an InteractionModel and converts
input features into scores


	metrics (list) – List of keras Metric objects/strings that will be used for evaluating the trained model


	optimizer (Optimizer) – Tensorflow keras optimizer to be used for training the model


	model_file (str, optional) – Path to pretrained model file to be loaded for evaluation or retraining


	initialize_layers_dict (dict, optional) – Dictionary of tensorflow layer names mapped to the path of pretrained weights
Use this for transfer learning with pretrained weights


	freeze_layers_list (list, optional) – List of model layer names to be frozen
Use this for freezing pretrained weights from other ml4ir models


	compile_keras_model (bool, optional) – Whether the keras model loaded from disk should be compiled
with loss, metrics and an optimizer


	output_name (str, optional) – Name of the output tensorflow node that captures the score


	logger (Logger, optional) – logging handler for status messages


	eval_config (dict) – A dictionary of Evaluation config parameters









	
predict(test_dataset: tensorflow.python.data.ops.readers.TFRecordDatasetV2, inference_signature: str = 'serving_default', additional_features: dict = {}, logs_dir: Optional[str] = None, logging_frequency: int = 25)

	Predict the scores on the test dataset using the trained model


	Parameters

	
	test_dataset (Dataset object) – Dataset object for which predictions are to be made


	inference_signature (str, optional) – If using a SavedModel for prediction, specify the inference signature to be used for computing scores


	additional_features (dict, optional) – Dictionary containing new feature name and function definition to
compute them. Use this to compute additional features from the scores.
For example, converting ranking scores for each document into ranks for
the query


	logs_dir (str, optional) – Path to directory to save logs


	logging_frequency (int) – Value representing how often(in batches) to log status






	Returns

	pandas DataFrame containing the predictions on the test dataset
made with the RelevanceModel



	Return type

	pd.DataFrame










	
evaluate(test_dataset: tensorflow.python.data.ops.readers.TFRecordDatasetV2, inference_signature: str = None, additional_features: dict = {}, group_metrics_min_queries: int = 50, logs_dir: Optional[str] = None, logging_frequency: int = 25, compute_intermediate_stats: bool = True)

	Evaluate the RelevanceModel


	Parameters

	
	test_dataset (an instance of tf.data.dataset) – 


	inference_signature (str, optional) – If using a SavedModel for prediction, specify the inference signature to be used for computing scores


	additional_features (dict, optional) – Dictionary containing new feature name and function definition to
compute them. Use this to compute additional features from the scores.
For example, converting ranking scores for each document into ranks for
the query


	group_metrics_min_queries (int, optional) – Minimum count threshold per group to be considered for computing
groupwise metrics


	logs_dir (str, optional) – Path to directory to save logs


	logging_frequency (int) – Value representing how often(in batches) to log status


	compute_intermediate_stats (bool) – [Currently ignored] Determines if group metrics and other intermediate stats on the test set should be computed






	Returns

	
	df_overall_metrics (pd.DataFrame object) – pd.DataFrame containing overall metrics


	df_groupwise_metrics (pd.DataFrame object) – pd.DataFrame containing groupwise metrics if
group_metric_keys are defined in the FeatureConfig


	metrics_dict (dict) – metrics as a dictionary of metric names mapping to values










Notes

You can directly do a model.evaluate() only if the keras model is compiled

Override this method to implement your own evaluation metrics.






	
save(models_dir: str, preprocessing_keys_to_fns={}, postprocessing_fn=None, required_fields_only: bool = True, pad_sequence: bool = False, dataset: Optional[ml4ir.base.data.relevance_dataset.RelevanceDataset] = None, experiment_details: Optional[dict] = None)

	Save the RelevanceModel as a tensorflow SavedModel to the models_dir
Additionally, sets the score for the padded records to 0


	There are two different serving signatures currently used to save the model

	default: default keras model without any pre/post processing wrapper
tfrecord: serving signature that allows keras model to be served using TFRecord proto messages.


Allows definition of custom pre/post processing logic








Additionally, each model layer is also saved as a separate numpy zipped
array to enable transfer learning with other ml4ir models.


	Parameters

	
	models_dir (str) – path to directory to save the model


	preprocessing_keys_to_fns (dict) – dictionary mapping function names to tf.functions that should be saved in the preprocessing step of the tfrecord serving signature


	postprocessing_fn (function) – custom tensorflow compatible postprocessing function to be used at serving time.
Saved as part of the postprocessing layer of the tfrecord serving signature


	required_fields_only (bool) – boolean value defining if only required fields
need to be added to the tfrecord parsing function at serving time


	pad_sequence (bool, optional) – Value defining if sequences should be padded for SequenceExample proto inputs at serving time.
Set this to False if you want to not handle padded scores.


	dataset (RelevanceDataset object) – RelevanceDataset object that can optionally be passed to be used by downstream jobs
that want to save the data along with the model.
Note that this feature is currently unimplemented and is upto the users to override
and customize.


	experiment_details (dict) – Dictionary containing metadata and results about the current experiment








Notes

All the functions passed under preprocessing_keys_to_fns here must be
serializable tensor graph operations













          

      

      

    

  

    
      
          
            
  
Feature Configuration


FeatureConfig


	
class ml4ir.base.features.feature_config.FeatureConfig(features_dict, logger: Optional[logging.Logger] = None)

	Bases: object

Class that defines the features and their configurations used for
training, evaluating and serving a RelevanceModel on ml4ir.


	
features_dict

	Dictionary of features containing the configuration for every feature
in the model. This dictionary is used to define the FeatureConfig
object.


	Type

	dict










	
logger

	Logging handler to log progress messages


	Type

	Logging object










	
query_key

	Dictionary containing the feature configuration for the unique data point
ID, query key


	Type

	dict










	
label

	Dictionary containing the feature configuration for the label field
for training and evaluating the model


	Type

	dict










	
mask

	Dictionary containing the feature configuration for the computed mask
field which is used to identify padded values


	Type

	dict










	
features

	List of dictionaries containing configurations for all the features
excluding query_key and label


	Type

	list of dict










	
all_features

	List of dictionaries containing configurations for all the features
including query_key and label


	Type

	list of dict










	
train_features

	List of dictionaries containing configurations for all the features
which are used for training, identified by trainable=False


	Type

	list of dict










	
metadata_features

	List of dictionaries containing configurations for all the features which
are NOT used for training, identified by trainable=False. These can be
used for computing custom losses and metrics.


	Type

	list of dict










	
features_to_log

	List of dictionaries containing configurations for all the features which
will be logged when running model.predict(), identified using
log_at_inference=True


	Type

	list of dict










	
group_metrics_keys

	List of dictionaries containing configurations for all the features
which will be used to compute groupwise metrics


	Type

	list of dict









Notes

Abstract class that is overriden by ExampleFeatureConfig and
SequenceExampleFeatureConfig for the respective TFRecord types

Constructor to instantiate a FeatureConfig object


	Parameters

	
	features_dict (dict) – Dictionary containing the feature configuration for each of the
model features


	logger (Logging object, optional) – Logging object handler for logging progress messages









	
initialize_features()

	Initialize the feature attributes with empty lists accordingly






	
static get_instance(feature_config_dict: dict, tfrecord_type: str, logger: logging.Logger)

	Factory method to get FeatureConfig object from a dictionary of
feature configurations based on the TFRecord type


	Parameters

	
	feature_config_dict (dict) – Dictionary containing the feature definitions for all the features
for the model


	tfrecord_type ({"example", "sequence_example"}) – Type of the TFRecord message type used for the ml4ir RelevanceModel


	logger (Logging object) – Logging object handler to log status and progress messages






	Returns

	ExampleFeatureConfig or SequenceExampleFeatureConfig object computed
from the feature configuration dictionary



	Return type

	FeatureConfig object










	
extract_features()

	Extract the features from the input feature config dictionary
and assign to relevant FeatureConfig attributes






	
log_initialization()

	Log initial state of FeatureConfig object after extracting
all the attributes






	
get_query_key(key: str = None)

	Getter method for query_key in FeatureConfig object
Can additionally be used to only fetch a particular value from the dict


	Parameters

	key (str) – Value from the query_key feature configuration to be fetched



	Returns

	Query key value or entire config dictionary based on if the key is passed



	Return type

	str or int or bool or dict










	
get_label(key: str = None)

	Getter method for label in FeatureConfig object
Can additionally be used to only fetch a particular value from the dict


	Parameters

	key (str) – Value from the label feature configuration to be fetched



	Returns

	Label value or entire config dictionary based on if the key is passed



	Return type

	str or int or bool or dict










	
get_aux_label(key: str = None)

	Getter method for label in FeatureConfig object
Can additionally be used to only fetch a particular value from the dict


	Parameters

	key (str) – Value from the label feature configuration to be fetched



	Returns

	Label value or entire config dictionary based on if the key is passed



	Return type

	str or int or bool or dict










	
get_mask(key: str = None)

	Getter method for mask in FeatureConfig object
Can additionally be used to only fetch a particular value from the dict


	Parameters

	key (str) – Value from the mask feature configuration to be fetched



	Returns

	Label value or entire config dictionary based on if the key is passed



	Return type

	str or int or bool or dict










	
get_feature_by_node_name(name: str)

	Getter method for feature by node name in FeatureConfig object


	Parameters

	name (str) – Name of the feature node name to fetch



	Returns

	Feature config dictionary for the name of the feature passed



	Return type

	dict










	
get_feature(name: str)

	Getter method for feature in FeatureConfig object


	Parameters

	name (str) – Name of the feature to fetch



	Returns

	Feature config dictionary for the name of the feature passed



	Return type

	dict










	
feature_exists(name: str, trainable=True)

	Check if a feature exists in FeatureConfig object


	Parameters

	name (str) – Name of the feature to fetch



	Returns

	If a feature exists



	Return type

	Boolean










	
set_feature(name: str, new_feature_info: dict)

	Setter method to set the feature_info of a feature in the FeatureConfig
as specified by the name argument


	Parameters

	
	name (str) – name of feature whose feature_info is to be updated


	new_feature_info (dict) – dictionary used to set the feature_info for the
feature with specified name













	
get_all_features(key: str = None, include_label: bool = True, include_mask: bool = True)

	Getter method for all_features in FeatureConfig object
Can additionally be used to only fetch a particular value from the dict


	Parameters

	
	key (str, optional) – Name of the configuration key to be fetched.
If None, then entire dictionary for the feature is returned


	include_label (bool, optional) – Include label in list of features returned


	include_mask (bool, optional) – Include mask in the list of features returned.
Only applicable with SequenceExampleFeatureConfig currently






	Returns

	Lift of feature configuration dictionaries or values for
all features in FeatureConfig



	Return type

	list










	
get_train_features(key: str = None)

	Getter method for train_features in FeatureConfig object
Can additionally be used to only fetch a particular value from the dict


	Parameters

	key (str, optional) – Name of the configuration key to be fetched.
If None, then entire dictionary for the feature is returned



	Returns

	Lift of feature configuration dictionaries or values for
trainable features in FeatureConfig



	Return type

	list










	
get_metadata_features(key: str = None)

	Getter method for metadata_features in FeatureConfig object
Can additionally be used to only fetch a particular value from the dict


	Parameters

	key (str, optional) – Name of the configuration key to be fetched.
If None, then entire dictionary for the feature is returned



	Returns

	Lift of feature configuration dictionaries or values for
metadata features in FeatureConfig



	Return type

	list










	
get_features_to_log(key: str = None)

	Getter method for features_to_log in FeatureConfig object
Can additionally be used to only fetch a particular value from the dict


	Parameters

	key (str, optional) – Name of the configuration key to be fetched.
If None, then entire dictionary for the feature is returned



	Returns

	Lift of feature configuration dictionaries or values for
features to be logged at inference



	Return type

	list










	
get_group_metrics_keys(key: str = None)

	Getter method for group_metrics_keys in FeatureConfig object
Can additionally be used to only fetch a particular value from the dict


	Parameters

	key (str, optional) – Name of the configuration key to be fetched.
If None, then entire dictionary for the feature is returned



	Returns

	Lift of feature configuration dictionaries or values for
features used to compute groupwise metrics



	Return type

	list










	
get_dtype(feature_info: dict)

	Retrieve data type of a feature


	Parameters

	feature_info (dict) – Dictionary containing configuration for the feature



	Returns

	Data type of the feature



	Return type

	str










	
get_default_value(feature_info)

	Retrieve default value of a feature


	Parameters

	feature_info (dict) – Dictionary containing configuration for the feature



	Returns

	Default value of the feature



	Return type

	str or int or float










	
create_dummy_protobuf(num_records=1, required_only=False)

	Generate a dummy TFRecord protobuffer with dummy values


	Parameters

	
	num_records (int) – Number of records or sequence features per TFRecord message to fetch


	required_only (bool) – Whether to fetch on fields with required_only=True






	Returns

	Example or SequenceExample object with dummy values generated
from the FeatureConfig



	Return type

	protobuffer object










	
get_hyperparameter_dict()

	Create hyperparameter configs to track model metadata for best model selection
Unwraps the feature config for each of the features to add
preprocessing_info and feature_layer_info as key value pairs
that can be tracked across the experiment. This can be used to
identify the values that were set for the different feature layers
in a given experiment. Will be used during best model selection and
Hyper Parameter Optimization.


	Returns

	Flattened dictionary of important configuration keys and values
that can be used for tracking the experiment run



	Return type

	dict















ExampleFeatureConfig


	
class ml4ir.base.features.feature_config.ExampleFeatureConfig(features_dict, logger: Optional[logging.Logger] = None)

	Bases: ml4ir.base.features.feature_config.FeatureConfig

Class that defines the features and their configurations used for
training, evaluating and serving a RelevanceModel on ml4ir for
Example data


	
features_dict

	Dictionary of features containing the configuration for every feature
in the model. This dictionary is used to define the FeatureConfig
object.


	Type

	dict










	
logger

	Logging handler to log progress messages


	Type

	Logging object










	
query_key

	Dictionary containing the feature configuration for the unique data point
ID, query key


	Type

	dict










	
label

	Dictionary containing the feature configuration for the label field
for training and evaluating the model


	Type

	dict










	
features

	List of dictionaries containing configurations for all the features
excluding query_key and label


	Type

	list of dict










	
all_features

	List of dictionaries containing configurations for all the features
including query_key and label


	Type

	list of dict










	
train_features

	List of dictionaries containing configurations for all the features
which are used for training, identified by trainable=False


	Type

	list of dict










	
metadata_features

	List of dictionaries containing configurations for all the features which
are NOT used for training, identified by trainable=False. These can be
used for computing custom losses and metrics.


	Type

	list of dict










	
features_to_log

	List of dictionaries containing configurations for all the features which
will be logged when running model.predict(), identified using
log_at_inference=True


	Type

	list of dict










	
group_metrics_keys

	List of dictionaries containing configurations for all the features
which will be used to compute groupwise metrics


	Type

	list of dict









Constructor to instantiate a FeatureConfig object


	Parameters

	
	features_dict (dict) – Dictionary containing the feature configuration for each of the
model features


	logger (Logging object, optional) – Logging object handler for logging progress messages









	
create_dummy_protobuf(num_records=1, required_only=False)

	Create a SequenceExample protobuffer with dummy values











SequenceExampleFeatureConfig


	
class ml4ir.base.features.feature_config.SequenceExampleFeatureConfig(features_dict, logger)

	Bases: ml4ir.base.features.feature_config.FeatureConfig

Class that defines the features and their configurations used for
training, evaluating and serving a RelevanceModel on ml4ir for
SequenceExample data


	
features_dict

	Dictionary of features containing the configuration for every feature
in the model. This dictionary is used to define the FeatureConfig
object.


	Type

	dict










	
logger

	Logging handler to log progress messages


	Type

	Logging object










	
query_key

	Dictionary containing the feature configuration for the unique data point
ID, query key


	Type

	dict










	
label

	Dictionary containing the feature configuration for the label field
for training and evaluating the model


	Type

	dict










	
rank

	Dictionary containing the feature configuration for the rank field
for training and evaluating the model. rank is used to assign an
ordering to the sequences in the SequenceExample


	Type

	dict










	
mask

	Dictionary containing the feature configuration for the mask field
for training and evaluating the model. mask is used to identify
which sequence features are padded. A value of 1 represents an
existing sequence feature and 0 represents a padded sequence feature.


	Type

	dict










	
features

	List of dictionaries containing configurations for all the features
excluding query_key and label


	Type

	list of dict










	
all_features

	List of dictionaries containing configurations for all the features
including query_key and label


	Type

	list of dict










	
context_features

	List of dictionaries containing configurations for all the features
which represent the features common to the entire sequence in a
protobuf message


	Type

	list of dict










	
sequence_features

	List of dictionaries containing configurations for all the features
which represent the feature unique to a sequence


	Type

	list of dict










	
train_features

	List of dictionaries containing configurations for all the features
which are used for training, identified by trainable=False


	Type

	list of dict










	
metadata_features

	List of dictionaries containing configurations for all the features which
are NOT used for training, identified by trainable=False. These can be
used for computing custom losses and metrics.


	Type

	list of dict










	
features_to_log

	List of dictionaries containing configurations for all the features which
will be logged when running model.predict(), identified using
log_at_inference=True


	Type

	list of dict










	
group_metrics_keys

	List of dictionaries containing configurations for all the features
which will be used to compute groupwise metrics


	Type

	list of dict









Constructor to instantiate a FeatureConfig object


	Parameters

	
	features_dict (dict) – Dictionary containing the feature configuration for each of the
model features


	logger (Logging object, optional) – Logging object handler for logging progress messages









	
initialize_features()

	Initialize the feature attributes with empty lists accordingly






	
extract_features()

	Extract the features from the input feature config dictionary
and assign to relevant FeatureConfig attributes






	
get_context_features(key: str = None)

	Getter method for context_features in FeatureConfig object
Can additionally be used to only fetch a particular value from the dict


	Parameters

	key (str, optional) – Name of the configuration key to be fetched.
If None, then entire dictionary for the feature is returned



	Returns

	Lift of feature configuration dictionaries or values for
context features common to all sequence



	Return type

	list










	
get_sequence_features(key: str = None)

	Getter method for sequence_features in FeatureConfig object
Can additionally be used to only fetch a particular value from the dict


	Parameters

	key (str, optional) – Name of the configuration key to be fetched.
If None, then entire dictionary for the feature is returned



	Returns

	Lift of feature configuration dictionaries or values for
sequence features unique to each sequence



	Return type

	list










	
log_initialization()

	Log initial state of FeatureConfig object after extracting
all the attributes






	
generate_mask()

	Add mask information used to flag padded records.
In order to create a batch of sequence examples from n TFRecords,
we need to make sure that they all have the same number of sequences.
To do this, we pad sequence records to a fixed max_sequence_size.
Now, we do not want to use these additional padded sequence records
to compute metrics and losses. Hence we maintain a boolean mask to
tell ml4ir the sequence records that were originally present.

In this method, we add the feature_info for the above mask feature as it
is not implicitly present in the data.


	Returns

	Dictionary configuration for the mask field that captures
which sequence have been masked in a SequenceExample message



	Return type

	dict










	
get_rank(key: str = None)

	Getter method for rank in FeatureConfig object
Can additionally be used to only fetch a particular value from the dict


	Parameters

	key (str) – Value from the rank feature configuration to be fetched



	Returns

	Rank value or entire config dictionary based on if the key is passed



	Return type

	str or int or bool or dict










	
get_mask(key: str = None)

	Getter method for mask in FeatureConfig object
Can additionally be used to only fetch a particular value from the dict


	Parameters

	key (str) – Value from the mask feature configuration to be fetched



	Returns

	Mask value or entire config dictionary based on if the key is passed



	Return type

	str or int or bool or dict










	
create_dummy_protobuf(num_records=1, required_only=False)

	Generate a dummy TFRecord protobuffer with dummy values


	Parameters

	
	num_records (int) – Number of records or sequence features per TFRecord message to fetch


	required_only (bool) – Whether to fetch on fields with required_only=True






	Returns

	Example or SequenceExample object with dummy values generated
from the FeatureConfig



	Return type

	protobuffer object

















          

      

      

    

  

    
      
          
            
  
Losses


RelevanceLossBase


	
class ml4ir.base.model.losses.loss_base.RelevanceLossBase(trainable=True, name=None, dtype=None, dynamic=False, **kwargs)

	Bases: keras.engine.base_layer.Layer

Abstract class that defines the loss and final activation function
used to train a RelevanceModel


	
call(inputs, y_true, y_pred, training=None)

	Compute the loss using predicted probabilities and expected labels


	Parameters

	
	inputs (dict of dict of tensors) – Dictionary of input feature tensors


	y_true (tensor) – True labels


	y_pred (tensor) – Predicted scores


	training (boolean) – Boolean indicating whether the layer is being used in training mode






	Returns

	Resulting loss tensor after applying comparing the y_pred and y_true values



	Return type

	tensor










	
final_activation_op(inputs, training=None)

	Final activation layer that is applied to the logits tensor to get the scores


	Parameters

	
	inputs (dict of dict of tensors) – Dictionary of input feature tensors with scores


	training (boolean) – Boolean indicating whether the layer is being used in training mode






	Returns

	Resulting score tensor after applying the function on the logits



	Return type

	tensor










	
get_config()

	Return layer config that is used while serialization











SigmoidCrossEntropy


	
class ml4ir.applications.ranking.model.losses.pointwise_losses.SigmoidCrossEntropy(loss_key='pointwise', scoring_type='', output_name='score', **kwargs)

	Bases: ml4ir.applications.ranking.model.losses.loss_base.PointwiseLossBase


	
call(inputs, y_true, y_pred, training=None)

	Get the sigmoid cross entropy loss
Additionally can pass in record positions to handle positional bias


	Parameters

	
	inputs (dict of dict of tensors) – Dictionary of input feature tensors


	y_true (tensor) – True labels


	y_pred (tensor) – Predicted scores


	training (boolean) – Boolean indicating whether the layer is being used in training mode






	Returns

	Scalar sigmoid cross entropy loss tensor



	Return type

	tensor





Notes

Uses mask field to exclude padded records from contributing
to the loss






	
final_activation_op(inputs, training=None)

	Get sigmoid activated scores on logits


	Parameters

	inputs (dict of dict of tensors) – Dictionary of input feature tensors



	Returns

	sigmoid activated scores



	Return type

	tensor















RankOneListNet


	
class ml4ir.applications.ranking.model.losses.listwise_losses.RankOneListNet(loss_key: str = 'rank_one_listnet', scoring_type: str = 'listwise', output_name: str = 'score', **kwargs)

	Bases: ml4ir.applications.ranking.model.losses.listwise_losses.SoftmaxCrossEntropy


	Parameters

	
	loss_key (str) – Name of the loss function as specified by LossKey


	scoring_type (str) – Type of scoring function - pointwise, pairwise, groupwise


	output_name (str) – Name of the output node for the predicted scores









	
call(inputs, y_true, y_pred, training=None)

	Define a masked rank 1 ListNet loss.
This loss is useful for multi-label classification when we have multiple
click labels per document. This is because the loss breaks down the comparison
between y_pred and y_true into individual binary assessments.
Ref -> https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2007-40.pdf


	Parameters

	
	inputs (dict of dict of tensors) – Dictionary of input feature tensors


	y_true (tensor) – True labels


	y_pred (tensor) – Predicted scores


	training (boolean) – Boolean indicating whether the layer is being used in training mode






	Returns

	Scalar sigmoid cross entropy loss tensor



	Return type

	tensor





Notes

Uses mask field to exclude padded records from contributing
to the loss











CategoricalCrossEntropy


	
class ml4ir.applications.classification.model.losses.categorical_cross_entropy.CategoricalCrossEntropy(output_name, **kwargs)

	Bases: ml4ir.base.model.losses.loss_base.RelevanceLossBase

Initialize categorical cross entropy loss


	Parameters

	output_name (str) – Name of the output node after final activation op






	
call(inputs, y_true, y_pred, training=None)

	Define a categorical cross entropy loss


	Parameters

	
	inputs (dict of dict of tensors) – Dictionary of input feature tensors


	y_true (tensor) – True labels


	y_pred (tensor) – Predicted scores


	training (boolean) – Boolean indicating whether the layer is being used in training mode






	Returns

	Categorical cross entropy loss



	Return type

	function










	
final_activation_op(inputs, training=None)

	Get softmax activated scores on logits


	Parameters

	inputs (dict of dict of tensors) – Dictionary of input feature tensors



	Returns

	Softmax activated scores



	Return type

	tensor










	
get_config()

	Return layer config that is used while serialization













          

      

      

    

  

    
      
          
            
  
Metrics

Any keras supported Metric class can be used with ml4ir. ml4ir comes prepackaged with the following popular search metrics.


MeanReciprocalRank


	
class ml4ir.applications.ranking.model.metrics.metrics_impl.MRR(name='mean', dtype=None)

	Bases: ml4ir.applications.ranking.model.metrics.metrics_impl.MeanRankMetric

Custom metric class to compute the Mean Reciprocal Rank.

Calculates the mean of the reciprocal ranks of the
clicked records from a list of queries.

Examples

>>> `y_true` is [[0, 0, 1], [0, 1, 0]]
>>> `y_pred` is [[0.1, 0.9, 0.8], [0.05, 0.95, 0]]
>>> then the MRR is 0.75











AverageClickRank


	
class ml4ir.applications.ranking.model.metrics.metrics_impl.ACR(name='mean', dtype=None)

	Bases: ml4ir.applications.ranking.model.metrics.metrics_impl.MeanRankMetric

Custom metric class to compute the Average Click Rank.

Calculates the mean of the ranks of the
clicked records from a list of queries.

Examples

>>> `y_true` is [[0, 0, 1], [0, 1, 0]]
>>> `y_pred` is [[0.1, 0.9, 0.8], [0.05, 0.95, 0]]
>>> then the ACR is 1.50











CategoricalAccuracy



Top5CategoricalAccuracy


	
class ml4ir.applications.classification.model.metrics.metrics_impl.Top5CategoricalAccuracy(name='top_5_categorical_accuracy', **kwargs)

	Bases: keras.metrics.metrics.TopKCategoricalAccuracy

Custom metric class to compute the Top K Categorical Accuracy.

Currently a wrapper around tf.keras.metrics.TopKCategoricalAccuracy that
squeezes one dimension.
It maintains consistency of arguments to __init__

Creates a CategoricalAccuracy instance


	Parameters

	name (str) – Name of the metric






	
update_state(y_true, y_pred, sample_weight=None)

	Squeeze the second dimension(axis=1) and compute top K categorical accuracy


	Parameters

	
	y_true (Tensor object) – Tensor containing true class labels
Shape : [batch_size, 1, num_classes]


	y_pred (Tensor object) – Tensor containing predicted scores for the classes
Shape : [batch_size, 1, num_classes]


	sample_weight (dict) – Dictionary containing weights for the classes to measure weighted average metric






	Returns

	Top K categorical accuracy computed on y_true and y_pred



	Return type

	Tensor object





Notes

Input shape is a 3 dimensional tensor of size
(batch_size, 1, num_classes). We are squeezing
the second dimension to follow the API of tf.keras.metrics.TopKCategoricalAccuracy

Axis 1 of y_true and y_pred must be of size 1, otherwise tf.squeeze
will throw error.













          

      

      

    

  

    
      
          
            
  
Feature Processing


	
ml4ir.base.features.preprocessing.preprocess_text

	String preprocessing function that removes punctuation and converts strings to lower case
based on the arguments.

Parameters
feature_tensor : Tensor object


input feature tensor of type tf.string





	remove_punctuationbool

	Whether to remove punctuation characters from strings



	to_lowerbool

	Whether to convert string to lower case



	punctuationstr

	Punctuation characters to replace (a single string containing the character to remove



	replace_with_whitespacebool

	if True punctuation will be replaced by whitespace (i.e. used as separator), note that
leading and trailing whitespace will also be removed, as well as consecutive whitespaces.






	Returns

	Processed string tensor



	Return type

	Tensor object





Examples


	Input:

	>>> feature_tensor = "ABCabc123,,,"
>>> remove_punctuation = True
>>> to_lower = True







	Output:

	>>> "abcabc123"














	
ml4ir.base.features.preprocessing.get_one_hot_label_vectorizer(feature_info, file_io: ml4ir.base.io.file_io.FileIO)

	Returns a tf function to convert categorical string labels to a one hot encoding.


	Parameters

	
	feature_info (dict) – Dictionary representing the configuration parameters for the specific feature from the FeatureConfig.
See categorical_indicator_with_vocabulary_file, here it is used to read a vocabulary file to
create the one hot encoding.


	file_io (FileIO required to load the vocabulary file.) – 






	Returns

	Function that converts labels into one hot vectors



	Return type

	function





Examples


	Input:

	>>> feature_tensor = ["abc", "xyz", "abc"]
>>> vocabulary file
>>>    abc -> 0
>>>    xyz -> 1
>>>    def -> 2







	Output:

	>>> [[1, 0, 0], [0, 1, 0], [1, 0, 0]]














	
ml4ir.base.features.preprocessing.split_and_pad_string

	String preprocessing function that splits and pads a sequence based on the max_length.


	Parameters

	
	feature_tensor (Tensor object) – Input feature tensor of type tf.string.


	split_char (str) – String separator to split the string input.


	max_length (int) – max length of the sequence produced after padding.






	Returns

	processed float tensor



	Return type

	Tensor object





Examples


	Input:

	>>> feature_tensor = "AAA,BBB,CCC"
>>> split_char = ","
>>> max_length = 5







	Output:

	>>> ['AAA', 'BBB', 'CCC', '', '']














	
ml4ir.base.features.preprocessing.natural_log

	Compute the signed log of the feature_tensor


	Parameters

	
	feature_tensor (Tensor object) – input feature tensor of type tf.float32


	shift (int) – floating point shift that is added to the feature tensor element wise before computing natural log
(used to handle 0 values)








Examples


	Input:

	>>> feature_tensor = [10, 0]
>>> shift = 1







	Output:

	>>> [2.39, 0.]
















          

      

      

    

  

    
      
          
            
  
Feature Transformation


Categorical Feature Transformations


	
class ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithHashBuckets(feature_info: dict, file_io: ml4ir.base.io.file_io.FileIO, **kwargs)

	Bases: ml4ir.base.features.feature_fns.base.BaseFeatureLayerOp

Converts a string feature tensor into a categorical embedding.
Works by first converting the string into num_hash_buckets buckets
each of size hash_bucket_size, then converting each hash bucket into
a categorical embedding of dimension embedding_size. Finally, these embeddings
are combined either through mean, sum or concat operations to generate the final
embedding based on the feature_info.

Initialize the layer to get categorical embedding with hash buckets


	Parameters

	
	feature_info (dict) – Dictionary representing the configuration parameters for the specific feature from the FeatureConfig


	file_io (FileIO object) – FileIO handler object for reading and writing








Notes


	Args under feature_layer_info:

	
	num_hash_bucketsint

	number of different hash buckets to convert the input string into



	hash_bucket_sizeint

	the size of each hash bucket



	embedding_sizeint

	dimension size of the categorical embedding



	merge_modestr

	can be one of “mean”, “sum”, “concat” representing the mode of combining embeddings from each categorical embedding










	
LAYER_NAME = 'categorical_embedding_with_hash_buckets'

	




	
NUM_HASH_BUCKETS = 'num_hash_buckets'

	




	
HASH_BUCKET_SIZE = 'hash_bucket_size'

	




	
EMBEDDING_SIZE = 'embedding_size'

	




	
MERGE_MODE = 'merge_mode'

	




	
call(inputs, training=None)

	Defines the forward pass for the layer on the inputs tensor


	Parameters

	
	inputs (tensor) – Input tensor on which the feature transforms are applied


	training (boolean) – Boolean flag indicating if the layer is being used in training mode or not






	Returns

	Resulting tensor after the forward pass through the feature transform layer



	Return type

	tf.Tensor














	
class ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithIndices(feature_info: dict, file_io: ml4ir.base.io.file_io.FileIO, **kwargs)

	Bases: ml4ir.base.features.feature_fns.base.BaseFeatureLayerOp

Converts input integer tensor into categorical embedding.
Works by converting the categorical indices in the input feature_tensor,
represented as integer values, into categorical embeddings based on the feature_info.

Initialize feature layer to convert categorical feature into embedding based on indices


	Parameters

	
	feature_info (dict) – Dictionary representing the configuration parameters for the specific feature from the FeatureConfig


	file_io (FileIO object) – FileIO handler object for reading and writing








Notes


	Args under feature_layer_info:

	
	num_bucketsint

	Maximum number of categorical values



	default_valueint

	default value to be assigned to indices out of the num_buckets range



	embedding_sizeint

	dimension size of the categorical embedding










	
LAYER_NAME = 'categorical_embedding_with_indices'

	




	
NUM_BUCKETS = 'num_buckets'

	




	
DEFAULT_VALUE = 'default_value'

	




	
EMBEDDING_SIZE = 'embedding_size'

	




	
call(inputs, training=None)

	Defines the forward pass for the layer on the inputs tensor


	Parameters

	
	inputs (tensor) – Input tensor on which the feature transforms are applied


	training (boolean) – Boolean flag indicating if the layer is being used in training mode or not






	Returns

	Resulting tensor after the forward pass through the feature transform layer



	Return type

	tf.Tensor














	
class ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingToEncodingBiLSTM(feature_info: dict, file_io: ml4ir.base.io.file_io.FileIO, **kwargs)

	Bases: ml4ir.base.features.feature_fns.base.BaseFeatureLayerOp

Encode a string tensor into categorical embedding.
Works by converting the string into a word sequence and then generating a categorical/char embedding for each words
based on the List of strings that form the vocabulary set of categorical values, defined by the argument
vocabulary_file.
The char/byte embeddings are then combined using a biLSTM.

Initialize the layer to convert input string tensor into an encoding using
categorical embeddings


	Parameters

	
	feature_info (dict) – Dictionary representing the configuration parameters for the specific feature from the FeatureConfig


	file_io (FileIO object) – FileIO handler object for reading and writing








Notes


	Args under feature_layer_info:

	
	vocabulary_filestring

	path to vocabulary CSV file for the input tensor containing the vocabulary to look-up.
uses the “key” named column as vocabulary of the 1st column if no “key” column present.



	max_length: int

	
	max number of rows to consider from the vocabulary file.

	if null, considers the entire file vocabulary.







	embedding_sizeint

	
	dimension size of the embedding;

	if null, then the tensor is just converted to its one-hot representation







	encoding_sizeint

	dimension size of the sequence encoding computed using a biLSTM









The input dimension for the embedding is fixed to 256 because the string is
converted into a bytes sequence.


	
LAYER_NAME = 'categorical_embedding_to_encoding_bilstm'

	




	
VOCABULARY_FILE = 'vocabulary_file'

	




	
MAX_LENGTH = 'max_length'

	




	
EMBEDDING_SIZE = 'embedding_size'

	




	
ENCODING_SIZE = 'encoding_size'

	




	
LSTM_KERNEL_INITIALIZER = 'lstm_kernel_initializer'

	




	
call(inputs, training=None)

	Defines the forward pass for the layer on the inputs tensor


	Parameters

	
	inputs (tensor) – Input tensor on which the feature transforms are applied


	training (boolean) – Boolean flag indicating if the layer is being used in training mode or not






	Returns

	Resulting tensor after the forward pass through the feature transform layer



	Return type

	tf.Tensor














	
class ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithVocabularyFile(feature_info: dict, file_io: ml4ir.base.io.file_io.FileIO, **kwargs)

	Bases: ml4ir.base.features.feature_fns.base.BaseFeatureLayerOp

Converts a string tensor into a categorical embedding representation.
Works by using a vocabulary file to convert the string tensor into categorical indices
and then converting the categories into embeddings based on the feature_info.

Initialize layer to define a categorical embedding using a vocabulary file


	Parameters

	
	feature_info (dict) – Dictionary representing the configuration parameters for the specific feature from the FeatureConfig


	file_io (FileIO object) – FileIO handler object for reading and writing








Notes


	Args under feature_layer_info:

	
	vocabulary_filestring

	
	path to vocabulary CSV file for the input tensor containing the vocabulary to look-up.

	uses the “key” named column as vocabulary of the 1st column if no “key” column present.







	max_lengthint

	
	max number of rows to consider from the vocabulary file.

	if null, considers the entire file vocabulary.







	num_oov_bucketsint

	
	number of out of vocabulary buckets/slots to be used to

	encode strings into categorical indices







	embedding_sizeint

	dimension size of categorical embedding









The vocabulary CSV file must contain two columns - key, id,
where the key is mapped to one id thereby resulting in a
many-to-one vocabulary mapping.
If id field is absent, a unique whole number id is assigned by default
resulting in a one-to-one mapping


	
LAYER_NAME = 'categorical_embedding_with_vocabulary_file'

	




	
VOCABULARY_FILE = 'vocabulary_file'

	




	
MAX_LENGTH = 'max_length'

	




	
NUM_OOV_BUCKETS = 'num_oov_buckets'

	




	
NUM_BUCKETS = 'num_buckets'

	




	
EMBEDDING_SIZE = 'embedding_size'

	




	
DEFAULT_VALUE = 'default_value'

	




	
call(inputs, training=None)

	Defines the forward pass for the layer on the inputs tensor


	Parameters

	
	inputs (tensor) – Input tensor on which the feature transforms are applied


	training (boolean) – Boolean flag indicating if the layer is being used in training mode or not






	Returns

	Resulting tensor after the forward pass through the feature transform layer



	Return type

	tf.Tensor














	
class ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithVocabularyFileAndDropout(feature_info: dict, file_io: ml4ir.base.io.file_io.FileIO, **kwargs)

	Bases: ml4ir.base.features.feature_fns.base.BaseFeatureLayerOp

Converts a string tensor into a categorical embedding representation.
Works by using a vocabulary file to convert the string tensor into categorical indices
and then converting the categories into embeddings based on the feature_info.
Also uses a dropout to convert categorical indices to the OOV index of 0 at a rate of dropout_rate


	Parameters

	
	feature_info (dict) – Dictionary representing the configuration parameters for the specific feature from the FeatureConfig


	file_io (FileIO object) – FileIO handler object for reading and writing








Notes


	Args under feature_layer_info:

	
	vocabulary_filestr

	path to vocabulary CSV file for the input tensor



	dropout_ratefloat

	rate at which to convert categorical indices to OOV



	embedding_sizeint

	dimension size of categorical embedding









The vocabulary CSV file must contain two columns - key, id,
where the key is mapped to one id thereby resulting in a
many-to-one vocabulary mapping.
If id field is absent, a unique natural number id is assigned by default
resulting in a one-to-one mapping

OOV index will be set to 0
num_oov_buckets will be 0


	
LAYER_NAME = 'categorical_embedding_with_vocabulary_file_and_dropout'

	




	
VOCABULARY_FILE = 'vocabulary_file'

	




	
DROPOUT_RATE = 'dropout_rate'

	




	
EMBEDDING_SIZE = 'embedding_size'

	




	
NUM_BUCKETS = 'num_buckets'

	




	
DEFAULT_VALUE = 'default_value'

	




	
call(inputs, training=None)

	Defines the forward pass for the layer on the inputs tensor


	Parameters

	
	inputs (tensor) – Input tensor on which the feature transforms are applied


	training (boolean) – Boolean flag indicating if the layer is being used in training mode or not






	Returns

	Resulting tensor after the forward pass through the feature transform layer



	Return type

	tf.Tensor














	
class ml4ir.base.features.feature_fns.categorical.CategoricalIndicatorWithVocabularyFile(feature_info: dict, file_io: ml4ir.base.io.file_io.FileIO, **kwargs)

	Bases: ml4ir.base.features.feature_fns.base.BaseFeatureLayerOp

Converts a string tensor into a categorical one-hot representation.
Works by using a vocabulary file to convert the string tensor into categorical indices
and then converting the categories into one-hot representation.


	Parameters

	
	feature_info (dict) – Dictionary representing the configuration parameters for the specific feature from the FeatureConfig


	file_io (FileIO object) – FileIO handler object for reading and writing








Notes


	Args under feature_layer_info:

	
	vocabulary_filestring

	path to vocabulary CSV file for the input tensor containing the vocabulary to look-up.
uses the “key” named column as vocabulary of the 1st column if no “key” column present.



	max_lengthint

	max number of rows to consider from the vocabulary file.
if null, considers the entire file vocabulary.



	num_oov_bucketsint, optional

	number of out of vocabulary buckets/slots to be used to
encode strings into categorical indices. If not specified, the default is 1.









The vocabulary CSV file must contain two columns - key, id,
where the key is mapped to one id thereby resulting in a
many-to-one vocabulary mapping.
If id field is absent, a unique whole number id is assigned by default
resulting in a one-to-one mapping


	
LAYER_NAME = 'categorical_indicator_with_vocabulary_file'

	




	
VOCABULARY_FILE = 'vocabulary_file'

	




	
MAX_LENGTH = 'max_length'

	




	
NUM_OOV_BUCKETS = 'num_oov_buckets'

	




	
call(inputs, training=None)

	Defines the forward pass for the layer on the inputs tensor


	Parameters

	
	inputs (tensor) – Input tensor on which the feature transforms are applied


	training (boolean) – Boolean flag indicating if the layer is being used in training mode or not






	Returns

	Resulting tensor after the forward pass through the feature transform layer



	Return type

	tf.Tensor















Sequence Feature Transformations


	
class ml4ir.base.features.feature_fns.sequence.BytesSequenceToEncodingBiLSTM(feature_info: dict, file_io: ml4ir.base.io.file_io.FileIO, **kwargs)

	Bases: ml4ir.base.features.feature_fns.base.BaseFeatureLayerOp

Encode a string tensor into an encoding.
Works by converting the string into a bytes sequence and then generating
a categorical/char embedding for each of the 256 bytes. The char/byte embeddings
are then combined using a biLSTM

Initialize a feature layer to convert string tensor to bytes encoding


	Parameters

	
	feature_info (dict) – Dictionary representing the feature_config for the input feature


	file_io (FileIO object) – FileIO handler object for reading and writing








Notes


	Args under feature_layer_info:

	
	max_lengthint

	max length of bytes sequence



	embedding_sizeint

	dimension size of the embedding;
if null, then the tensor is just converted to its one-hot representation



	encoding_sizeint

	dimension size of the sequence encoding computed using a biLSTM









The input dimension for the embedding is fixed to 256 because the string is
converted into a bytes sequence.


	
LAYER_NAME = 'bytes_sequence_to_encoding_bilstm'

	




	
MAX_LENGTH = 'max_length'

	




	
EMBEDDING_SIZE = 'embedding_size'

	




	
LSTM_KERNEL_INITIALIZER = 'lstm_kernel_initializer'

	




	
ENCODING_SIZE = 'encoding_size'

	




	
call(inputs, training=None)

	Defines the forward pass for the layer on the inputs tensor


	Parameters

	
	inputs (tensor) – Input tensor on which the feature transforms are applied


	training (boolean) – Boolean flag indicating if the layer is being used in training mode or not






	Returns

	Resulting tensor after the forward pass through the feature transform layer



	Return type

	tf.Tensor














	
class ml4ir.base.features.feature_fns.sequence.Global1dPooling(feature_info: dict, file_io: ml4ir.base.io.file_io.FileIO, **kwargs)

	Bases: ml4ir.base.features.feature_fns.base.BaseFeatureLayerOp

1D pooling to reduce a variable length sequence feature into a scalar
value. This method optionally allows users to add multiple such pooling
operations to produce a fixed dimensional feature vector as well.

Initialize a feature layer to apply global 1D pooling operation on input tensor


	Parameters

	
	feature_info (dict) – Dictionary representing the feature_config for the input feature


	file_io (FileIO object) – FileIO handler object for reading and writing








Notes


	Args under feature_layer_info:

	
	fnslist of str

	List of string pooling operations that should be applied.
Must be one of [“sum”, “mean”, “max”, “min”, “count_nonzero”]



	padded_valint/float

	Value to be ignored from the pooling operations.



	masked_max_valint/float

	Value used to mask the padded values for computing the max and min
pooling operations. This allows us to ignore these values in the min
and max pool operations. For example, if all the values in the tensor
are in [0., 1.], then a masked_max_val of > 1. will make sure we do
not pick padded values in the min/max pooling ops.
Default value: 2










	
LAYER_NAME = 'global_1d_pooling'

	




	
FNS = 'fns'

	




	
PADDED_VAL = 'padded_val'

	




	
MASKED_MAX_VAL = 'masked_max_val'

	




	
DEFAULT_MASKED_MAX_VAL = 2.0

	




	
call(inputs, training=None)

	Defines the forward pass for the layer on the inputs tensor


	Parameters

	
	inputs (tensor) – Input tensor on which the feature transforms are applied


	training (boolean) – Boolean flag indicating if the layer is being used in training mode or not






	Returns

	Resulting tensor after the forward pass through the feature transform layer



	Return type

	tf.Tensor















Tensorflow Native Operations


	
class ml4ir.base.features.feature_fns.tf_native.TFNativeOpLayer(feature_info: dict, file_io: ml4ir.base.io.file_io.FileIO, **kwargs)

	Bases: ml4ir.base.features.feature_fns.base.BaseFeatureLayerOp

Run a series of tensorflow native operations on the input feature tensor.
The functions will be applied in the order they are specified.

Initialize the feature layer


	Parameters

	
	feature_info (dict) – Dictionary representing the feature_config for the input feature


	file_io (FileIO object) – FileIO handler object for reading and writing








Notes


	Args under feature_layer_info:

	
	ops: list of dict

	List of function specifications with associated arguments


	Arguments under ops:

	
	fnstr

	Tensorflow native function name. Should start with tf.
Example: tf.math.log or tf.clip_by_value



	argsdict

	Keyword arguments to be passed to the tensorflow function


















	
LAYER_NAME = 'tf_native_op'

	




	
OPS = 'ops'

	




	
call(inputs, training=None)

	Defines the forward pass for the layer on the inputs tensor


	Parameters

	
	inputs (tensor) – Input tensor on which the feature transforms are applied


	training (boolean) – Boolean flag indicating if the layer is being used in training mode or not






	Returns

	Resulting tensor after the forward pass through the feature transform layer



	Return type

	tf.Tensor

















          

      

      

    

  

    
      
          
            
  
Interaction Model


InteractionModel


	
class ml4ir.base.model.scoring.interaction_model.InteractionModel(feature_config: ml4ir.base.features.feature_config.FeatureConfig, tfrecord_type: str, feature_layer_keys_to_fns: dict = {}, max_sequence_size: int = 0, file_io: ml4ir.base.io.file_io.FileIO = None, **kwargs)

	Bases: keras.engine.training.Model

InteractionModel class that defines tensorflow layers that act on input features to
convert them into numeric features to be fed into further neural network layers

Constructor for instantiating a base InteractionModel


	Parameters

	
	feature_config (FeatureConfig object) – FeatureConfig object that defines list of model features
and the feature transformation functions to be used on each


	tfrecord_type ({"example", "sequence_example"}) – Type of TFRecord protobuf being used for model training


	feature_layer_keys_to_fns (dict) – Dictionary of custom feature transformation functions to be applied
on the input features


	max_sequence_size (int, optional) – Maximum size of the sequence in SequenceExample protobuf


	file_io (FileIO object) – FileIO object that handles read write operations














UnivariateInteractionModel


	
class ml4ir.base.model.scoring.interaction_model.UnivariateInteractionModel(feature_config: ml4ir.base.features.feature_config.FeatureConfig, tfrecord_type: str, feature_layer_keys_to_fns: dict = {}, max_sequence_size: int = 0, file_io: ml4ir.base.io.file_io.FileIO = None, **kwargs)

	Bases: ml4ir.base.model.scoring.interaction_model.InteractionModel

Keras layer that applies in-graph transformations to input feature tensors

Constructor for instantiating a UnivariateInteractionModel


	Parameters

	
	feature_config (FeatureConfig object) – FeatureConfig object that defines list of model features
and the feature transformation functions to be used on each


	tfrecord_type ({"example", "sequence_example"}) – Type of TFRecord protobuf being used for model training


	feature_layer_keys_to_fns (dict) – Dictionary of custom feature transformation functions to be applied
on the input features


	max_sequence_size (int, optional) – Maximum size of the sequence in SequenceExample protobuf


	file_io (FileIO object) – FileIO object that handles read write operations









	
call(inputs, training=None)

	Apply the feature transform op to each feature


	Parameters

	
	inputs (dict of tensors) – List of tensors that can be found in the FeatureConfig
key-d with their node_name


	training (boolean) – Boolean specifying if the layer is used in training mode or not






	Returns

	
	train: dict of tensors

	List of transformed features that are used for training



	metadata: dict of tensors

	List of transformed features that are used as metadata









	Return type

	dict of dict of tensors















feature_layer


	
class ml4ir.base.features.feature_layer.FeatureLayerMap

	Bases: object

Class defining mapping from keys to feature layer functions

Define ml4ir’s predefined feature transformation functions


	
add_fn(key, fn)

	Add custom new function to the FeatureLayerMap


	Parameters

	
	key (str) – name of the feature transformation function


	fn (tf.function) – tensorflow function that transforms input features













	
add_fns(keys_to_fns_dict)

	Add custom new functions to the FeatureLayerMap


	Parameters

	keykeys_to_fns_dict (dict) – Dictionary with name and definition of custom
tensorflow functions that transform input features










	
get_fns()

	Get all feature transformation functions


	Returns

	Dictionary of feature transformation functions



	Return type

	dict










	
get_fn(key)

	Get feature transformation function using the key


	Parameters

	key (str) – Name of the feature transformation function to be fetched



	Returns

	Feature transformation function



	Return type

	tf.function










	
pop_fn(key)

	Get feature transformation function using the key and remove
from FeatureLayerMap


	Parameters

	key (str) – Name of the feature transformation function to be fetched



	Returns

	Feature transformation function



	Return type

	tf.function

















          

      

      

    

  

    
      
          
            
  
Scorer


ScorerBase



RelevanceScorer


	
class ml4ir.base.model.scoring.scoring_model.RelevanceScorer(model_config: dict, feature_config: ml4ir.base.features.feature_config.FeatureConfig, interaction_model: ml4ir.base.model.scoring.interaction_model.InteractionModel, loss: ml4ir.base.model.losses.loss_base.RelevanceLossBase, file_io: ml4ir.base.io.file_io.FileIO, aux_loss: Optional[ml4ir.base.model.losses.loss_base.RelevanceLossBase] = None, aux_loss_weight: float = 0.0, aux_metrics: Optional[List[Union[keras.metrics.base_metric.Metric, str]]] = None, output_name: str = 'score', logger: Optional[logging.Logger] = None, logs_dir: Optional[str] = '', **kwargs)

	Bases: keras.engine.training.Model

Base Scorer class that defines the neural network layers that convert
the input features into scores

Defines the feature transformation layer(InteractionModel), dense
neural network layers combined with activation layers and the loss function

Notes


	This is a Keras model subclass and is built recursively using keras Layer instances


	This is an abstract class. In order to use a Scorer, one must define
and override the architecture_op and the final_activation_op functions




Constructor method for creating a RelevanceScorer object


	Parameters

	
	model_config (dict) – Dictionary defining the model layer configuration


	feature_config (FeatureConfig object) – FeatureConfig object defining the features and their configurations


	interaction_model (InteractionModel object) – InteractionModel that defines the feature transformation layers
on the input model features


	loss (RelevanceLossBase object) – Relevance loss object that defines the final activation layer
and the loss function for the model


	file_io (FileIO object) – FileIO object that handles read and write


	aux_loss (RelevanceLossBase object) – Auxiliary loss to be used in conjunction with the primary loss


	aux_loss_weight (float) – Floating point number in [0, 1] to indicate the proportion of the auxiliary loss
in the total final loss value computed using a linear combination
total loss = (1 - aux_loss_weight) * loss + aux_loss_weight * aux_loss


	aux_metrics (List of keras.metrics.Metric) – Keras metric list to be computed on the aux label


	output_name (str, optional) – Name of the output that captures the score computed by the model


	logger (Logger, optional) – Logging handler


	logs_dir (str, optional) – Path to the logging directory








Notes


	logs_dirUsed to point model architectures to local logging directory,

	primarily for saving visualizations.






	
classmethod from_model_config_file(model_config_file: str, interaction_model: ml4ir.base.model.scoring.interaction_model.InteractionModel, loss: ml4ir.base.model.losses.loss_base.RelevanceLossBase, file_io: ml4ir.base.io.file_io.FileIO, aux_loss: Optional[ml4ir.base.model.losses.loss_base.RelevanceLossBase] = None, aux_loss_weight: float = 0.0, output_name: str = 'score', feature_config: Optional[ml4ir.base.features.feature_config.FeatureConfig] = None, logger: Optional[logging.Logger] = None, **kwargs)

	Get a Scorer object from a YAML model config file


	Parameters

	
	model_config_file (str) – Path to YAML file defining the model layer configuration


	feature_config (FeatureConfig object) – FeatureConfig object defining the features and their configurations


	interaction_model (InteractionModel object) – InteractionModel that defines the feature transformation layers
on the input model features


	loss (RelevanceLossBase object) – Relevance loss object that defines the final activation layer
and the loss function for the model


	file_io (FileIO object) – FileIO object that handles read and write


	aux_loss (RelevanceLossBase object) – Auxiliary loss to be used in conjunction with the primary loss


	aux_loss_weight (float) – Floating point number in [0, 1] to indicate the proportion of the auxiliary loss
in the total final loss value computed using a linear combination
total loss = (1 - aux_loss_weight) * loss + aux_loss_weight * aux_loss


	output_name (str, optional) – Name of the output that captures the score computed by the model


	logger (Logger, optional) – Logging handler






	Returns

	RelevanceScorer object that computes the scores from the input features of the model



	Return type

	RelevanceScorer object










	
plot_abstract_model()

	Visualize the model architecture if defined by the architecture op






	
call(inputs: Dict[str, tensorflow.python.framework.ops.Tensor], training=None)

	Compute score from input features


	Parameters

	inputs (dict of tensors) – Dictionary of input feature tensors



	Returns

	scores – Tensor object of the score computed by the model



	Return type

	dict of tensor object










	
get_architecture_op()

	Get the model architecture instance based on the configs






	
compile(**kwargs)

	Compile the keras model and defining a loss metrics to track any custom loss






	
train_step(data)

	Defines the operations performed within a single training step.
Called implicitly by tensorflow-keras when using model.fit()


	Parameters

	data (tuple of tensor objects) – Tuple of features and corresponding labels to be used to learn the
model weights



	Returns

	Dictionary of metrics and loss computed for this training step



	Return type

	dict










	
test_step(data)

	Defines the operations performed within a single prediction or evaluation step.
Called implicitly by tensorflow-keras when using model.predict() or model.evaluate()


	Parameters

	data (tuple of tensor objects) – Tuple of features and corresponding labels to be used to evaluate the model



	Returns

	Dictionary of metrics and loss computed for this evaluation step



	Return type

	dict










	
metrics

	Get the metrics for the keras model along with the custom loss metric













          

      

      

    

  

    
      
          
            
  
File I/O Utilities


FileIO


	
class ml4ir.base.io.file_io.FileIO(logger: Optional[logging.Logger] = None)

	Bases: object

Abstract class defining the file I/O handler methods

Constructor method to create a FileIO handler object


	Parameters

	logger (Logger object, optional) – logging handler object to instantiate FileIO object
with the ability to log progress updates






	
set_logger(logger: Optional[logging.Logger] = None)

	Setter method to assign a logging handler to the FileIO object


	Parameters

	logger (Logger object, optional) – logging handler object to be used with the FileIO object
to log progress updates










	
log(string, mode=20)

	Write specified string with preset logging object
using the mode specified


	Parameters

	
	string (str) – string text to be logged


	mode (int, optional) – One of the supported logging message types.
Currently supported values are logging.INFO, DEBUG, ERROR













	
make_directory(dir_path: str, clear_dir: bool = False) → str

	Create directory structure specified recursively


	Parameters

	
	dir_path (str) – path for directory to be create


	clear_dir (bool, optional) – clear contents on existing directory






	Returns

	path to the directory created



	Return type

	str










	
read_df(infile: str, sep: str = ', ', index_col: int = None, **kwargs) → Optional[pandas.core.frame.DataFrame]

	Load a pandas dataframe from a file


	Parameters

	
	infile (str) – path to the csv input file


	sep (str, optional) – separator to use for loading file


	index_col (int, optional) – column to be used as index






	Returns

	pandas dataframe loaded from specified path



	Return type

	pandas.DataFrame










	
read_df_list(infiles, sep=', ', index_col=None, **kwargs) → pandas.core.frame.DataFrame

	Load a pandas dataframe from a list of files by concatenating
the individual dataframes from each file


	Parameters

	
	infiles (list of str) – list of paths to the csv input files


	sep (str, optional) – separator to use for loading file


	index_col (int, optional) – column to be used as index


	Returns – 


	pandas.DataFrame – pandas dataframe loaded from specified path













	
write_df(df, outfile: str = None, sep: str = ', ', index: bool = True)

	Write a pandas dataframe to a file


	Parameters

	
	df (pandas.DataFrame) – dataframe to be written


	outfile (str. optional) – path to the csv output file


	sep (str, optional) – separator to use for loading file


	index (bool, optional) – boolean specifying if index should be saved













	
read_text_file(infile) → str

	Read text file and return as string


	Parameters

	infile (str) – path to the text file



	Returns

	file contents as a string



	Return type

	str










	
read_json(infile) → dict

	Read JSON file and return a python dictionary


	Parameters

	infile (str) – path to the json file



	Returns

	python dictionary loaded from JSON file



	Return type

	dict










	
read_yaml(infile) → dict

	Read YAML file and return a python dictionary


	Parameters

	infile (str) – path to the YAML file



	Returns

	python dictionary loaded from JSON file



	Return type

	dict










	
write_json(json_dict: dict, outfile: str)

	Write dictionary to a JSON file


	Parameters

	
	json_dict (dict) – dictionary to be dumped to json file


	outfile (str) – path to the output file













	
path_exists(path: str) → bool

	Check if a file path exists


	Parameters

	path (str) – check if path exists



	Returns

	True if path exists; False otherwise



	Return type

	bool










	
get_files_in_directory(indir: str, extension='.csv', prefix='')

	Get list of files in a directory


	Parameters

	
	indir (str) – input directory to search for files


	extension (str, optional) – extension of the files to search for


	prefix (str, optional) – string file name prefix to narrow search






	Returns

	list of file path strings



	Return type

	list of str










	
clear_dir(dir_path: str)

	Clear contents of existing directory


	Parameters

	dir_path (str) – path to directory to be cleared










	
rm_dir(dir_path: str)

	Delete existing directory


	Parameters

	dir_path (str) – path to directory to be removed










	
rm_file(file_path: str)

	Deletes existing file_path


	Parameters

	file_path (str) – path to file to be removed















LocalIO


	
class ml4ir.base.io.local_io.LocalIO(logger: Optional[logging.Logger] = None)

	Bases: ml4ir.base.io.file_io.FileIO

Class defining the file I/O handler methods for the local file system

Constructor method to create a FileIO handler object


	Parameters

	logger (Logger object, optional) – logging handler object to instantiate FileIO object
with the ability to log progress updates






	
make_directory(dir_path: str, clear_dir: bool = False)

	Create directory structure specified recursively


	Parameters

	
	dir_path (str) – path for directory to be create


	clear_dir (bool, optional) – clear contents on existing directory













	
read_df(infile: str, sep: str = ', ', index_col: int = None, **kwargs) → Optional[pandas.core.frame.DataFrame]

	Load a pandas dataframe from a file


	Parameters

	
	infile (str) – path to the csv input file; can be hdfs path


	sep (str, optional) – separator to use for loading file


	index_col (int, optional) – column to be used as index






	Returns

	pandas dataframe loaded from file



	Return type

	pandas.DataFrame










	
read_df_list(infiles, sep=', ', index_col=None, **kwargs) → pandas.core.frame.DataFrame

	Load a pandas dataframe from a list of files


	Parameters

	
	infiles (list of str) – paths to the csv input files; can be hdfs paths


	sep (str, optional) – separator to use for loading file


	index_col (int, optional) – column to be used as index






	Returns

	pandas dataframe loaded from file



	Return type

	pd.DataFrame










	
write_df(df, outfile: str = None, sep: str = ', ', index: bool = True) → str

	Write a pandas dataframe to a file


	Parameters

	
	df (pandas.DataFrame) – dataframe to be written


	outfile (str) – path to the csv output file; can NOT be hdfs path currently


	sep (str) – separator to use for loading file


	index (int) – boolean specifying if index should be saved






	Returns

	dataframe in csv form if outfile is None



	Return type

	str










	
read_json(infile) → dict

	Read JSON file and return a python dictionary


	Parameters

	infile (str) – path to the json file; can be hdfs path



	Returns

	python dictionary loaded from file



	Return type

	dict










	
read_yaml(infile) → dict

	Read YAML file and return a python dictionary


	Parameters

	infile (str) – path to the json file; can be hdfs path



	Returns

	python dictionary loaded from file



	Return type

	dict










	
write_json(json_dict: dict, outfile: str)

	Write dictionary to a JSON file


	Parameters

	
	json_dict (dict) – dictionary to be dumped to json file


	outfile (str) – path to the output file













	
path_exists(path: str) → bool

	Check if a path exists


	Parameters

	path (str) – check if path exists



	Returns

	True if path exists; False otherwise



	Return type

	bool










	
get_files_in_directory(indir: str, extension='.csv', prefix='')

	Get list of files in a directory


	Parameters

	
	indir (str) – input directory to search for files


	extension (str, optional) – extension of the files to search for


	prefix (str, optional) – string file name prefix to narrow search






	Returns

	list of file path strings



	Return type

	list of str










	
clear_dir_contents(dir_path: str)

	Clear contents of existing directory


	Parameters

	dir_path (str) – path to directory to be cleared










	
rm_dir(dir_path: str)

	Delete existing directory


	Parameters

	dir_path (str) – path to directory to be removed










	
rm_file(file_path: str)

	Delete existing file_path


	Parameters

	file_path (str) – path to file to be removed










	
save_numpy_array(np_array, file_path: str, allow_pickle=True, zip=True, **kwargs)

	Save a numpy array to disk


	Parameters

	
	np_array (numpy array or list of numpy arrays) – Array like numpy object to be saved


	file_path (str) – file path to save the object to


	allow_pickle (bool, optional) – Allow pickling of objects while saving


	zip (bool, optional,) – use np.savez to save the numpy arrays, allows passing in python list








Notes

Used to save individual model layer weights for transfer learning.

If using zip=True, the np_array has to be a python list
tensorflow layer weights are lists of arrays.
np.save() can not be used for saving list of numpy arrays directly
as it tries to manually convert the list into a numpy array, leading
to errors with numpy shape.
savez allows us to save each list item in separate files and abstracts this step for end user.






	
load_numpy_array(file_path, allow_pickle=True, unzip=True, **kwargs)

	Load a numpy array from disk


	Parameters

	
	file_path (str) – file path to load the numpy object from


	allow_pickle (bool, optional) – Allow pickling of objects while loading


	unzip (bool, optional) – To unzip the numpy array saved as a zip file. Used when saved with zip=True






	Returns

	python list of numpy arrays



	Return type

	list of numpy arrays





Notes

Used to load individual model layer weights for transfer learning











SparkIO


	
class ml4ir.base.io.spark_io.SparkIO(logger: Optional[logging.Logger] = None)

	Bases: ml4ir.base.io.file_io.FileIO

Class defining the file I/O handler methods for the HDFS file system using spark

Constructor method to create a FileIO handler object and
set up spark session and hadoop file system handlers


	Parameters

	logger (Logger object, optional) – logging handler object to instantiate FileIO object
with the ability to log progress updates






	
get_path_from_str(file_path: str)

	Get Path object from string


	Parameters

	file_path (str) – string file path



	Returns

	Hadoop Path object



	Return type

	hadoop path










	
read_df(infile: str, sep: str = ', ', index_col: int = None, **kwargs) → Optional[pandas.core.frame.DataFrame]

	Load a pandas dataframe from a file


	Parameters

	
	infile (str) – path to the csv input file; can be hdfs path


	sep (str, optional) – separator to use for loading file


	index_col (int, optional) – column to be used as index






	Returns

	pandas dataframe loaded from file



	Return type

	pandas.DataFrame










	
read_df_list(infiles, sep=', ', index_col=None, **kwargs) → pandas.core.frame.DataFrame

	Load a pandas dataframe from a list of files


	Parameters

	
	infiles (list of str) – paths to the csv input files; can be hdfs paths


	sep (str, optional) – separator to use for loading file


	index_col (int, optional) – column to be used as index






	Returns

	pandas dataframe loaded from list of files



	Return type

	pandas.DataFrame





Notes

sep and index_col are not used in SparkIO






	
read_text_file(infile) → str

	Read text file and return as string


	Parameters

	infile (str) – path to the text file



	Returns

	file contents as a string



	Return type

	str










	
read_json(infile) → dict

	Read JSON file and return a python dictionary


	Parameters

	infile (str) – path to the json file; can be hdfs path



	Returns

	python dictionary loaded from file



	Return type

	dict










	
read_yaml(infile) → dict

	Read YAML file and return a python dictionary


	Parameters

	infile (str) – path to the json file; can be hdfs path



	Returns

	python dictionary loaded from file



	Return type

	dict










	
path_exists(path: str) → bool

	Check if a path exists


	Parameters

	path (str) – check if path exists



	Returns

	True if path exists; False otherwise



	Return type

	bool










	
rm_dir(dir_path: str)

	Delete existing directory


	Parameters

	dir_path (str) – path to directory to be removed










	
rm_file(file_path: str)

	Deletes existing file_path


	Parameters

	file_path (str) – path to file to be removed










	
copy_from_hdfs(src: str, dest: str)

	Copy a directory/file from HDFS to local filesystem


	Parameters

	
	src (str) – String path to source(on HDFS)


	dest (str) – String path to destination(on local file system)













	
copy_to_hdfs(src: str, dest: str, overwrite=True)

	Copy a directory/file to HDFS from local filesystem

Parameters
src : str


String path to source(on local file system)





	deststr

	String path to destination(on HDFS)



	overwritebool, optional

	Boolean to specify whether existing destination files should be overwritten

















          

      

      

    

  

    
      
          
            
  
Changelog

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog [https://keepachangelog.com/en/1.0.0/],
and this project adheres to Semantic Versioning [https://semver.org/spec/v2.0.0.html].


[0.1.16] - 2023-02-06


Added


	RankMatchFailure metric for evaluation


	Statistical significance and power analysis utilities


	Stat analysis for groupwise metrics in Ranking







[0.1.15] - 2023-01-20


Changed


	Upgrading from tensorflow 2.0.x to 2.9.x


	Moving from Keras Functional API to Model Subclassing API for more customization capabilities


	Auxiliary loss is reimplemented as part of ScoringModel






Added


	AutoDAGNetwork which allows for building flexible connected architectures using config files


	SetRankEncoder keras Layer to train SetRank like Ranking models


	Support for using tf-models-official deep learning garden library


	RankMatchFailure metric for validation







[0.1.14] - 2022-11-18


Changed


	Ability to pass custom RelevanceModel class in Pipeline.







[0.1.13] - 2022-10-17


Fixed


	Bug in metrics_helper when used without secondary_labels






Added


	RankMatchFailure metric for evaluation


	RankMatchFailure auxiliary loss







[0.1.12] - 2022-04-26



[0.1.11] - 2021-01-18


Changed


	Adding rank feature to serving parse fn by default and removing dependence on required serving_info attribute







[0.1.10] - 2021-12-29


Changed


	Adding all trained features to serving parse fn by default







[0.1.9] - 2021-11-29


Changed


	Refactored secondary label metrics computation for ranking and added unit tests


	Added NDCG metric for secondary labels







[0.1.8] - 2021-10-21


Added


	New argument to model.save()







[0.1.7] - 2021-09-30


Added


	SoftmaxCrossEntropy loss for ranking models







[0.1.6] - 2021-07-16


Fixed


	Fixing required arguments in setup.py







[0.1.5] - 2021-07-15


Added


	Adding support for performing post-training steps (such as copying data) by custom class inheriting RelevancePipeline.







[0.1.4] - 2021-06-30


Changed


	Performing pre-processing step in __init__() to be able to copy files before model_config and feature_config are
initiated.







[0.1.3] - 2021-06-24


Changed


	Making pyspark an optional dependency to install ml4ir







[0.1.2] - 2021-06-16


Added


	Support for performing pre-processing steps (such as copying data) by custom class inheriting RelevancePipeline.







[0.1.1] - 2021-05-20


Added


	Support for using native tf/keras feature functions from the feature config YAML







[0.1.0] - 2021-03-01


Changed


	TFRecord format changed for SequenceExample to earlier implementation.


	Removed support for max_len attribute for SequenceExample features.


	No effective changes for Example TFRecords.


	TFRecord implementation on python (training) and jvm (inference) side are now in sync.







[0.0.5] - 2021-02-17


Added


	Changelog file to track version updates for ml4ir.


	build-requirements.txt with all python dependencies needed for developing on ml4ir and the CircleCI autobuilds.


	Updated CircleCI builds to use build-requirements.txt






Fixed


	Removed build requirements from the base ml4ir requirements.txt allowing us to keep the published whl file dependencies to be minimal.









          

      

      

    

  

    
      
          
            
  
License

                             Apache License
                       Version 2.0, January 2004
                    http://www.apache.org/licenses/





TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION


	Definitions.

“License” shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

“Legal Entity” shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity
exercising permissions granted by this License.

“Source” form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

“Object” form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, “submitted”
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.



	Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.


	Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.


	Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.



	Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.


	Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.


	Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.


	Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.


	Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.




END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

  To apply the Apache License to your work, attach the following
  boilerplate notice, with the fields enclosed by brackets "[]"
  replaced with your own identifying information. (Don't include
  the brackets!)  The text should be enclosed in the appropriate
  comment syntax for the file format. We also recommend that a
  file or class name and description of purpose be included on the
  same "printed page" as the copyright notice for easier
  identification within third-party archives.





Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0





Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.




          

      

      

    

  

    
      
          
            
  
Contact Us

For any issues with ml4ir, please file an issue on github here [https://github.com/salesforce/ml4ir/issues]

For further questions, please contact one of the following contributors:


	Ashish Bharadwaj Srinivasa - ashish.srinivasa@salesforce.com


	Jake Mannix - jmannix@salesforce.com







          

      

      

    

  

    
      
          
            

   Python Module Index


   
   m
   


   
     		 	

     		
       m	

     
       	[image: -]
       	
       ml4ir	
       

     
       	
       	   
       ml4ir.base.data.csv_reader	
       

     
       	
       	   
       ml4ir.base.data.tfrecord_reader	
       

     
       	
       	   
       ml4ir.base.data.tfrecord_writer	
       

     
       	
       	   
       ml4ir.base.features.feature_fns.categorical	
       

     
       	
       	   
       ml4ir.base.features.feature_fns.sequence	
       

     
       	
       	   
       ml4ir.base.features.feature_fns.tf_native	
       

     
       	
       	   
       ml4ir.base.features.feature_layer	
       

     
       	
       	   
       ml4ir.base.features.preprocessing	
       

   



          

      

      

    

  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 


A


  	
      	ACR (class in ml4ir.applications.ranking.model.metrics.metrics_impl)


      	add_fn() (ml4ir.base.features.feature_layer.FeatureLayerMap method)


      	add_fns() (ml4ir.base.features.feature_layer.FeatureLayerMap method)


  

  	
      	add_temperature_layer() (ml4ir.base.model.relevance_model.RelevanceModel method)


      	all_features (ml4ir.base.features.feature_config.ExampleFeatureConfig attribute)

      
        	(ml4ir.base.features.feature_config.FeatureConfig attribute)


        	(ml4ir.base.features.feature_config.SequenceExampleFeatureConfig attribute)


      


  





B


  	
      	balance_classes() (ml4ir.base.data.relevance_dataset.RelevanceDataset method)


  

  	
      	build() (ml4ir.base.model.relevance_model.RelevanceModel method)


      	BytesSequenceToEncodingBiLSTM (class in ml4ir.base.features.feature_fns.sequence)


  





C


  	
      	calibrate() (ml4ir.base.model.relevance_model.RelevanceModel method)


      	call() (ml4ir.applications.classification.model.losses.categorical_cross_entropy.CategoricalCrossEntropy method)

      
        	(ml4ir.applications.ranking.model.losses.listwise_losses.RankOneListNet method)


        	(ml4ir.applications.ranking.model.losses.pointwise_losses.SigmoidCrossEntropy method)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingToEncodingBiLSTM method)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithHashBuckets method)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithIndices method)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithVocabularyFile method)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithVocabularyFileAndDropout method)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalIndicatorWithVocabularyFile method)


        	(ml4ir.base.features.feature_fns.sequence.BytesSequenceToEncodingBiLSTM method)


        	(ml4ir.base.features.feature_fns.sequence.Global1dPooling method)


        	(ml4ir.base.features.feature_fns.tf_native.TFNativeOpLayer method)


        	(ml4ir.base.model.losses.loss_base.RelevanceLossBase method)


        	(ml4ir.base.model.scoring.interaction_model.UnivariateInteractionModel method)


        	(ml4ir.base.model.scoring.scoring_model.RelevanceScorer method)


      


      	CategoricalCrossEntropy (class in ml4ir.applications.classification.model.losses.categorical_cross_entropy)


      	CategoricalEmbeddingToEncodingBiLSTM (class in ml4ir.base.features.feature_fns.categorical)


  

  	
      	CategoricalEmbeddingWithHashBuckets (class in ml4ir.base.features.feature_fns.categorical)


      	CategoricalEmbeddingWithIndices (class in ml4ir.base.features.feature_fns.categorical)


      	CategoricalEmbeddingWithVocabularyFile (class in ml4ir.base.features.feature_fns.categorical)


      	CategoricalEmbeddingWithVocabularyFileAndDropout (class in ml4ir.base.features.feature_fns.categorical)


      	CategoricalIndicatorWithVocabularyFile (class in ml4ir.base.features.feature_fns.categorical)


      	ClassificationPipeline (class in ml4ir.applications.classification.pipeline)


      	clear_dir() (ml4ir.base.io.file_io.FileIO method)


      	clear_dir_contents() (ml4ir.base.io.local_io.LocalIO method)


      	compile() (ml4ir.base.model.scoring.scoring_model.RelevanceScorer method)


      	context_features (ml4ir.base.features.feature_config.SequenceExampleFeatureConfig attribute)


      	copy_from_hdfs() (ml4ir.base.io.spark_io.SparkIO method)


      	copy_to_hdfs() (ml4ir.base.io.spark_io.SparkIO method)


      	create_dataset() (ml4ir.base.data.relevance_dataset.RelevanceDataset method)


      	create_dummy_protobuf() (ml4ir.base.features.feature_config.ExampleFeatureConfig method)

      
        	(ml4ir.base.features.feature_config.FeatureConfig method)


        	(ml4ir.base.features.feature_config.SequenceExampleFeatureConfig method)


      


      	create_pipeline_for_kfold() (ml4ir.applications.classification.pipeline.ClassificationPipeline method)

      
        	(ml4ir.applications.ranking.pipeline.RankingPipeline method)


        	(ml4ir.base.pipeline.RelevancePipeline method)


      


  





D


  	
      	DEFAULT_MASKED_MAX_VAL (ml4ir.base.features.feature_fns.sequence.Global1dPooling attribute)


      	DEFAULT_VALUE (ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithIndices attribute)

      
        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithVocabularyFile attribute)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithVocabularyFileAndDropout attribute)


      


  

  	
      	define_scheduler_as_callback() (ml4ir.base.model.relevance_model.RelevanceModel method)


      	DROPOUT_RATE (ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithVocabularyFileAndDropout attribute)


  





E


  	
      	EMBEDDING_SIZE (ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingToEncodingBiLSTM attribute)

      
        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithHashBuckets attribute)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithIndices attribute)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithVocabularyFile attribute)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithVocabularyFileAndDropout attribute)


        	(ml4ir.base.features.feature_fns.sequence.BytesSequenceToEncodingBiLSTM attribute)


      


      	ENCODING_SIZE (ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingToEncodingBiLSTM attribute)

      
        	(ml4ir.base.features.feature_fns.sequence.BytesSequenceToEncodingBiLSTM attribute)


      


  

  	
      	evaluate() (ml4ir.applications.ranking.model.ranking_model.RankingModel method)

      
        	(ml4ir.base.model.relevance_model.RelevanceModel method)


      


      	ExampleFeatureConfig (class in ml4ir.base.features.feature_config)


      	extract_features() (ml4ir.base.features.feature_config.FeatureConfig method)

      
        	(ml4ir.base.features.feature_config.SequenceExampleFeatureConfig method)


      


      	extract_features_from_proto() (ml4ir.base.data.tfrecord_reader.TFRecordExampleParser method)

      
        	(ml4ir.base.data.tfrecord_reader.TFRecordParser method)


        	(ml4ir.base.data.tfrecord_reader.TFRecordSequenceExampleParser method)


      


  





F


  	
      	feature_exists() (ml4ir.base.features.feature_config.FeatureConfig method)


      	FeatureConfig (class in ml4ir.base.features.feature_config)


      	FeatureLayerMap (class in ml4ir.base.features.feature_layer)


      	features (ml4ir.base.features.feature_config.ExampleFeatureConfig attribute)

      
        	(ml4ir.base.features.feature_config.FeatureConfig attribute)


        	(ml4ir.base.features.feature_config.SequenceExampleFeatureConfig attribute)


      


      	features_dict (ml4ir.base.features.feature_config.ExampleFeatureConfig attribute)

      
        	(ml4ir.base.features.feature_config.FeatureConfig attribute)


        	(ml4ir.base.features.feature_config.SequenceExampleFeatureConfig attribute)


      


      	features_to_log (ml4ir.base.features.feature_config.ExampleFeatureConfig attribute)

      
        	(ml4ir.base.features.feature_config.FeatureConfig attribute)


        	(ml4ir.base.features.feature_config.SequenceExampleFeatureConfig attribute)


      


  

  	
      	FileIO (class in ml4ir.base.io.file_io)


      	final_activation_op() (ml4ir.applications.classification.model.losses.categorical_cross_entropy.CategoricalCrossEntropy method)

      
        	(ml4ir.applications.ranking.model.losses.pointwise_losses.SigmoidCrossEntropy method)


        	(ml4ir.base.model.losses.loss_base.RelevanceLossBase method)


      


      	finish() (ml4ir.base.pipeline.RelevancePipeline method)


      	fit() (ml4ir.base.model.relevance_model.RelevanceModel method)


      	FNS (ml4ir.base.features.feature_fns.sequence.Global1dPooling attribute)


      	from_model_config_file() (ml4ir.base.model.scoring.scoring_model.RelevanceScorer class method)


      	from_relevance_scorer() (ml4ir.base.model.relevance_model.RelevanceModel class method)


      	from_univariate_interaction_model() (ml4ir.base.model.relevance_model.RelevanceModel class method)


  





G


  	
      	generate_and_add_mask() (ml4ir.base.data.tfrecord_reader.TFRecordExampleParser method)

      
        	(ml4ir.base.data.tfrecord_reader.TFRecordParser method)


        	(ml4ir.base.data.tfrecord_reader.TFRecordSequenceExampleParser method)


      


      	generate_mask() (ml4ir.base.features.feature_config.SequenceExampleFeatureConfig method)


      	get_all_features() (ml4ir.base.features.feature_config.FeatureConfig method)


      	get_architecture_op() (ml4ir.base.model.scoring.scoring_model.RelevanceScorer method)


      	get_aux_label() (ml4ir.base.features.feature_config.FeatureConfig method)


      	get_aux_loss() (ml4ir.applications.ranking.pipeline.RankingPipeline method)

      
        	(ml4ir.base.pipeline.RelevancePipeline method)


      


      	get_config() (ml4ir.applications.classification.model.losses.categorical_cross_entropy.CategoricalCrossEntropy method)

      
        	(ml4ir.base.model.losses.loss_base.RelevanceLossBase method)


      


      	get_context_features() (ml4ir.base.features.feature_config.SequenceExampleFeatureConfig method)


      	get_default_tensor() (ml4ir.base.data.tfrecord_reader.TFRecordExampleParser method)

      
        	(ml4ir.base.data.tfrecord_reader.TFRecordParser method)


        	(ml4ir.base.data.tfrecord_reader.TFRecordSequenceExampleParser method)


      


      	get_default_value() (ml4ir.base.features.feature_config.FeatureConfig method)


      	get_dtype() (ml4ir.base.features.feature_config.FeatureConfig method)


      	get_feature() (ml4ir.base.data.tfrecord_reader.TFRecordExampleParser method)

      
        	(ml4ir.base.data.tfrecord_reader.TFRecordParser method)


        	(ml4ir.base.data.tfrecord_reader.TFRecordSequenceExampleParser method)


        	(ml4ir.base.features.feature_config.FeatureConfig method)


      


      	get_feature_by_node_name() (ml4ir.base.features.feature_config.FeatureConfig method)


      	get_features_spec() (ml4ir.base.data.tfrecord_reader.TFRecordExampleParser method)

      
        	(ml4ir.base.data.tfrecord_reader.TFRecordParser method)


        	(ml4ir.base.data.tfrecord_reader.TFRecordSequenceExampleParser method)


      


      	get_features_to_log() (ml4ir.base.features.feature_config.FeatureConfig method)


      	get_files_in_directory() (ml4ir.base.io.file_io.FileIO method)

      
        	(ml4ir.base.io.local_io.LocalIO method)


      


      	get_fn() (ml4ir.base.features.feature_layer.FeatureLayerMap method)


      	get_fns() (ml4ir.base.features.feature_layer.FeatureLayerMap method)


      	get_group_metrics_keys() (ml4ir.base.features.feature_config.FeatureConfig method)


  

  	
      	get_hyperparameter_dict() (ml4ir.base.features.feature_config.FeatureConfig method)


      	get_instance() (ml4ir.base.features.feature_config.FeatureConfig static method)


      	get_kfold_relevance_dataset() (ml4ir.applications.classification.pipeline.ClassificationPipeline method)

      
        	(ml4ir.base.pipeline.RelevancePipeline method)


      


      	get_label() (ml4ir.base.features.feature_config.FeatureConfig method)


      	get_loss() (ml4ir.applications.classification.pipeline.ClassificationPipeline method)

      
        	(ml4ir.applications.ranking.pipeline.RankingPipeline method)


        	(ml4ir.base.pipeline.RelevancePipeline method)


      


      	get_mask() (ml4ir.base.features.feature_config.FeatureConfig method)

      
        	(ml4ir.base.features.feature_config.SequenceExampleFeatureConfig method)


      


      	get_metadata_features() (ml4ir.base.features.feature_config.FeatureConfig method)


      	get_metrics() (ml4ir.applications.classification.pipeline.ClassificationPipeline static method)

      
        	(ml4ir.applications.ranking.pipeline.RankingPipeline static method)


        	(ml4ir.base.pipeline.RelevancePipeline static method)


      


      	get_one_hot_label_vectorizer() (in module ml4ir.base.features.preprocessing)


      	get_parse_fn() (in module ml4ir.base.data.tfrecord_reader)

      
        	(ml4ir.base.data.tfrecord_reader.TFRecordParser method)


      


      	get_path_from_str() (ml4ir.base.io.spark_io.SparkIO method)


      	get_query_key() (ml4ir.base.features.feature_config.FeatureConfig method)


      	get_rank() (ml4ir.base.features.feature_config.SequenceExampleFeatureConfig method)


      	get_relevance_dataset() (ml4ir.applications.classification.pipeline.ClassificationPipeline method)

      
        	(ml4ir.base.pipeline.RelevancePipeline method)


      


      	get_relevance_model() (ml4ir.base.pipeline.RelevancePipeline method)


      	get_relevance_model_cls() (ml4ir.applications.classification.pipeline.ClassificationPipeline method)

      
        	(ml4ir.applications.ranking.pipeline.RankingPipeline method)


        	(ml4ir.base.pipeline.RelevancePipeline method)


      


      	get_sequence_features() (ml4ir.base.features.feature_config.SequenceExampleFeatureConfig method)


      	get_train_features() (ml4ir.base.features.feature_config.FeatureConfig method)


      	Global1dPooling (class in ml4ir.base.features.feature_fns.sequence)


      	group_metrics_keys (ml4ir.base.features.feature_config.ExampleFeatureConfig attribute)

      
        	(ml4ir.base.features.feature_config.FeatureConfig attribute)


        	(ml4ir.base.features.feature_config.SequenceExampleFeatureConfig attribute)


      


  





H


  	
      	HASH_BUCKET_SIZE (ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithHashBuckets attribute)


  





I


  	
      	initialize_features() (ml4ir.base.features.feature_config.FeatureConfig method)

      
        	(ml4ir.base.features.feature_config.SequenceExampleFeatureConfig method)


      


  

  	
      	InteractionModel (class in ml4ir.base.model.scoring.interaction_model)


      	is_compiled (ml4ir.base.model.relevance_model.RelevanceModel attribute)


  





K


  	
      	kfold_analysis() (ml4ir.applications.ranking.pipeline.RankingPipeline method)


  





L


  	
      	label (ml4ir.base.features.feature_config.ExampleFeatureConfig attribute)

      
        	(ml4ir.base.features.feature_config.FeatureConfig attribute)


        	(ml4ir.base.features.feature_config.SequenceExampleFeatureConfig attribute)


      


      	LAYER_NAME (ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingToEncodingBiLSTM attribute)

      
        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithHashBuckets attribute)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithIndices attribute)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithVocabularyFile attribute)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithVocabularyFileAndDropout attribute)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalIndicatorWithVocabularyFile attribute)


        	(ml4ir.base.features.feature_fns.sequence.BytesSequenceToEncodingBiLSTM attribute)


        	(ml4ir.base.features.feature_fns.sequence.Global1dPooling attribute)


        	(ml4ir.base.features.feature_fns.tf_native.TFNativeOpLayer attribute)


      


  

  	
      	load() (ml4ir.base.model.relevance_model.RelevanceModel method)


      	load_numpy_array() (ml4ir.base.io.local_io.LocalIO method)


      	load_weights() (ml4ir.base.model.relevance_model.RelevanceModel method)


      	LocalIO (class in ml4ir.base.io.local_io)


      	log() (ml4ir.base.io.file_io.FileIO method)


      	log_initialization() (ml4ir.base.features.feature_config.FeatureConfig method)

      
        	(ml4ir.base.features.feature_config.SequenceExampleFeatureConfig method)


      


      	logger (ml4ir.base.features.feature_config.ExampleFeatureConfig attribute)

      
        	(ml4ir.base.features.feature_config.FeatureConfig attribute)


        	(ml4ir.base.features.feature_config.SequenceExampleFeatureConfig attribute)


      


      	LSTM_KERNEL_INITIALIZER (ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingToEncodingBiLSTM attribute)

      
        	(ml4ir.base.features.feature_fns.sequence.BytesSequenceToEncodingBiLSTM attribute)


      


  





M


  	
      	make_directory() (ml4ir.base.io.file_io.FileIO method)

      
        	(ml4ir.base.io.local_io.LocalIO method)


      


      	mask (ml4ir.base.features.feature_config.FeatureConfig attribute)

      
        	(ml4ir.base.features.feature_config.SequenceExampleFeatureConfig attribute)


      


      	MASKED_MAX_VAL (ml4ir.base.features.feature_fns.sequence.Global1dPooling attribute)


      	MAX_LENGTH (ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingToEncodingBiLSTM attribute)

      
        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithVocabularyFile attribute)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalIndicatorWithVocabularyFile attribute)


        	(ml4ir.base.features.feature_fns.sequence.BytesSequenceToEncodingBiLSTM attribute)


      


      	MERGE_MODE (ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithHashBuckets attribute)


      	metadata_features (ml4ir.base.features.feature_config.ExampleFeatureConfig attribute)

      
        	(ml4ir.base.features.feature_config.FeatureConfig attribute)


        	(ml4ir.base.features.feature_config.SequenceExampleFeatureConfig attribute)


      


  

  	
      	metrics (ml4ir.base.model.scoring.scoring_model.RelevanceScorer attribute)


      	ml4ir.base.data.csv_reader (module)


      	ml4ir.base.data.tfrecord_reader (module)


      	ml4ir.base.data.tfrecord_writer (module)


      	ml4ir.base.features.feature_fns.categorical (module)


      	ml4ir.base.features.feature_fns.sequence (module)


      	ml4ir.base.features.feature_fns.tf_native (module)


      	ml4ir.base.features.feature_layer (module)


      	ml4ir.base.features.preprocessing (module)


      	MRR (class in ml4ir.applications.ranking.model.metrics.metrics_impl)


  





N


  	
      	natural_log (in module ml4ir.base.features.preprocessing)


      	NUM_BUCKETS (ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithIndices attribute)

      
        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithVocabularyFile attribute)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithVocabularyFileAndDropout attribute)


      


  

  	
      	NUM_HASH_BUCKETS (ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithHashBuckets attribute)


      	NUM_OOV_BUCKETS (ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithVocabularyFile attribute)

      
        	(ml4ir.base.features.feature_fns.categorical.CategoricalIndicatorWithVocabularyFile attribute)


      


  





O


  	
      	OPS (ml4ir.base.features.feature_fns.tf_native.TFNativeOpLayer attribute)


  





P


  	
      	pad_feature() (ml4ir.base.data.tfrecord_reader.TFRecordExampleParser method)

      
        	(ml4ir.base.data.tfrecord_reader.TFRecordParser method)


        	(ml4ir.base.data.tfrecord_reader.TFRecordSequenceExampleParser method)


      


      	PADDED_VAL (ml4ir.base.features.feature_fns.sequence.Global1dPooling attribute)


      	path_exists() (ml4ir.base.io.file_io.FileIO method)

      
        	(ml4ir.base.io.local_io.LocalIO method)


        	(ml4ir.base.io.spark_io.SparkIO method)


      


  

  	
      	plot_abstract_model() (ml4ir.base.model.scoring.scoring_model.RelevanceScorer method)


      	pop_fn() (ml4ir.base.features.feature_layer.FeatureLayerMap method)


      	post_training_step() (ml4ir.base.pipeline.RelevancePipeline method)


      	pre_processing_step() (ml4ir.base.pipeline.RelevancePipeline method)


      	predict() (ml4ir.applications.ranking.model.ranking_model.RankingModel method)

      
        	(ml4ir.base.model.relevance_model.RelevanceModel method)


      


      	preprocess_feature() (ml4ir.base.data.tfrecord_reader.TFRecordParser method)


      	preprocess_text (in module ml4ir.base.features.preprocessing)


  





Q


  	
      	query_key (ml4ir.base.features.feature_config.ExampleFeatureConfig attribute)

      
        	(ml4ir.base.features.feature_config.FeatureConfig attribute)


        	(ml4ir.base.features.feature_config.SequenceExampleFeatureConfig attribute)


      


  





R


  	
      	rank (ml4ir.base.features.feature_config.SequenceExampleFeatureConfig attribute)


      	RankingModel (class in ml4ir.applications.ranking.model.ranking_model)


      	RankingPipeline (class in ml4ir.applications.ranking.pipeline)


      	RankOneListNet (class in ml4ir.applications.ranking.model.losses.listwise_losses)


      	read() (in module ml4ir.base.data.csv_reader)

      
        	(in module ml4ir.base.data.tfrecord_reader)


      


      	read_df() (ml4ir.base.io.file_io.FileIO method)

      
        	(ml4ir.base.io.local_io.LocalIO method)


        	(ml4ir.base.io.spark_io.SparkIO method)


      


      	read_df_list() (ml4ir.base.io.file_io.FileIO method)

      
        	(ml4ir.base.io.local_io.LocalIO method)


        	(ml4ir.base.io.spark_io.SparkIO method)


      


      	read_json() (ml4ir.base.io.file_io.FileIO method)

      
        	(ml4ir.base.io.local_io.LocalIO method)


        	(ml4ir.base.io.spark_io.SparkIO method)


      


      	read_text_file() (ml4ir.base.io.file_io.FileIO method)

      
        	(ml4ir.base.io.spark_io.SparkIO method)


      


      	read_yaml() (ml4ir.base.io.file_io.FileIO method)

      
        	(ml4ir.base.io.local_io.LocalIO method)


        	(ml4ir.base.io.spark_io.SparkIO method)


      


  

  	
      	RelevanceDataset (class in ml4ir.base.data.relevance_dataset)


      	RelevanceLossBase (class in ml4ir.base.model.losses.loss_base)


      	RelevanceModel (class in ml4ir.base.model.relevance_model)


      	RelevancePipeline (class in ml4ir.base.pipeline)


      	RelevanceScorer (class in ml4ir.base.model.scoring.scoring_model)


      	rm_dir() (ml4ir.base.io.file_io.FileIO method)

      
        	(ml4ir.base.io.local_io.LocalIO method)


        	(ml4ir.base.io.spark_io.SparkIO method)


      


      	rm_file() (ml4ir.base.io.file_io.FileIO method)

      
        	(ml4ir.base.io.local_io.LocalIO method)


        	(ml4ir.base.io.spark_io.SparkIO method)


      


      	run() (ml4ir.base.pipeline.RelevancePipeline method)


      	run_kfold_analysis() (ml4ir.applications.classification.pipeline.ClassificationPipeline method)

      
        	(ml4ir.applications.ranking.pipeline.RankingPipeline method)


      


      	run_pipeline() (ml4ir.base.pipeline.RelevancePipeline method)


      	run_ttest() (ml4ir.base.model.relevance_model.RelevanceModel method)


  





S


  	
      	save() (ml4ir.applications.ranking.model.ranking_model.RankingModel method)

      
        	(ml4ir.base.model.relevance_model.RelevanceModel method)


      


      	save_numpy_array() (ml4ir.base.io.local_io.LocalIO method)


      	sequence_features (ml4ir.base.features.feature_config.SequenceExampleFeatureConfig attribute)


      	SequenceExampleFeatureConfig (class in ml4ir.base.features.feature_config)


      	set_feature() (ml4ir.base.features.feature_config.FeatureConfig method)


  

  	
      	set_logger() (ml4ir.base.io.file_io.FileIO method)


      	set_seeds() (ml4ir.base.pipeline.RelevancePipeline method)


      	setup_logging() (ml4ir.base.pipeline.RelevancePipeline method)


      	SigmoidCrossEntropy (class in ml4ir.applications.ranking.model.losses.pointwise_losses)


      	SparkIO (class in ml4ir.base.io.spark_io)


      	split_and_pad_string (in module ml4ir.base.features.preprocessing)


  





T


  	
      	test_step() (ml4ir.base.model.scoring.scoring_model.RelevanceScorer method)


      	TFNativeOpLayer (class in ml4ir.base.features.feature_fns.tf_native)


      	TFRecordExampleParser (class in ml4ir.base.data.tfrecord_reader)


      	TFRecordParser (class in ml4ir.base.data.tfrecord_reader)


      	TFRecordSequenceExampleParser (class in ml4ir.base.data.tfrecord_reader)


  

  	
      	Top5CategoricalAccuracy (class in ml4ir.applications.classification.model.metrics.metrics_impl)


      	train_features (ml4ir.base.features.feature_config.ExampleFeatureConfig attribute)

      
        	(ml4ir.base.features.feature_config.FeatureConfig attribute)


        	(ml4ir.base.features.feature_config.SequenceExampleFeatureConfig attribute)


      


      	train_step() (ml4ir.base.model.scoring.scoring_model.RelevanceScorer method)


      	train_val_test_split() (ml4ir.base.data.relevance_dataset.RelevanceDataset method)


  





U


  	
      	UnivariateInteractionModel (class in ml4ir.base.model.scoring.interaction_model)


  

  	
      	update_state() (ml4ir.applications.classification.model.metrics.metrics_impl.Top5CategoricalAccuracy method)


  





V


  	
      	validate_args() (ml4ir.applications.ranking.pipeline.RankingPipeline method)


      	VOCABULARY_FILE (ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingToEncodingBiLSTM attribute)

      
        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithVocabularyFile attribute)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalEmbeddingWithVocabularyFileAndDropout attribute)


        	(ml4ir.base.features.feature_fns.categorical.CategoricalIndicatorWithVocabularyFile attribute)


      


  





W


  	
      	write_df() (ml4ir.base.io.file_io.FileIO method)

      
        	(ml4ir.base.io.local_io.LocalIO method)


      


      	write_from_df() (in module ml4ir.base.data.tfrecord_writer)


  

  	
      	write_from_files() (in module ml4ir.base.data.tfrecord_writer)


      	write_json() (ml4ir.base.io.file_io.FileIO method)

      
        	(ml4ir.base.io.local_io.LocalIO method)


      


  







          

      

      

    

  

    
      
          
            
  

          

      

      

    

  _static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/down.png





_static/comment.png





_static/down-pressed.png





_static/file.png





_static/minus.png





_images/ranking_data.png
queryid  query text record_text rank popularity_score page_views_score domain_name  clicked
query.2 food processor  Hamilton Beach 12-Cup Stack & Snap Food Processor 1 0898135 020381 Ktchen 1
query.2  food processor Ninja BN601 Professional Plus Food Processor 2 1147889 0.000000 Kitchen 0
query 5 Arthur C Clarke Chidhood's End 1 1990899 0042572 Science Fiction Books 1
query.5  Arthur G Clarke Rendezvous with Rama 2 0881701 0042572 Science Fiction Books 0
query 5 Arthur C Clarke 2001: A Space Odyssey 3 -1.565636 0041261 Science Fiction Books 0
query 5 Arthur C Clarke 2010: OcysseyTwo 4 -0.921634 0,082535 Science Fiction Books 0
query 5 Arthur C Clarke The Fountains of Paradise 5 -1.658981 0,046478  Science Fiction Books 0
query.5  Arthur G Clarke Ramall 6 -0.702505 0,030636  Science Fiction Books 0
query.6  insectspray Raid Flying Insect Kiler 1 -0.384123 0.040924 Pest Control 1
query. 6 insectspray Oriho Home Dense Max Indoor Insect Barrier 2 0531182 0.000000 Pest Control 0





_images/saved_model.png
Black Box tf Model

Serving Signature






_images/ml4ir_savedmodel.png
v il e
> s
B seeiroson
» i vaabes

v B e

bidirectional.npz
domain_id_embedding.npz
domain_name_embedding.npz
final_dense.npz

first dense.npz
uery.text_bytes_embedding.npz

second_dense.npz

vocab_lookup.npz

v Il s
> Bl e
[ e—
> Bl s





_images/query_classification_data.png
query.id  query text

«domain_name

previous_products

product_group

query 1d 0 coueh cushion
queny_id_1 wok
query id 2 cuisinart knife
queny_id 3 auracell

query_id_4 iphone x

Fumiture
Kitchen
Kitchen

Electronics

Electronics

Couch, Bookmarks]
[Gooking O]

[Cutting Boara]
[Flashight, Insect Spray]

[Graphics Card, Mouse]

Cushion
Fiying pan
Knives
Batteries

Mobile Phones





_images/tfrecord.png
query previous product
toxt products group

query_1

query previous product
toxt products group

query_2 record 2

page views
score

Sequence

query_1

Query Classification Learning to Rank
Example SequenceExample





_static/ml4ir.png
4 TensorFlow

/ eacre [ <
oy T ) auenzsaL

Koras Contigurable | | Customizable o
Functonal ode Feature = Soring
AP Architecture Layer Rt

https://github.com/salesforce/mldir






nav.xhtml

    
      Table of Contents


      
        		
          ml4ir - Machine Learning for Information Retrieval
        


        		
          Installation
          
            		
              Using ml4ir as a library
              
                		
                  Requirements
                


              


            


            		
              Using ml4ir as a toolkit or contributing to ml4ir
              
                		
                  Docker (Recommended)
                


                		
                  Virtual Environment
                


                		
                  Contributing to ml4ir
                


              


            


            		
              Running Tests
            


          


        


        		
          Quickstart
          
            		
              ml4ir’s Architecture
            


            		
              Using ml4ir as a toolkit
              
                		
                  Pipelines
                


                		
                  Command Line Arguments
                


                		
                  Usage Examples
                


              


            


            		
              Using ml4ir as a library
            


            		
              Data Loading Pipeline
            


            		
              Defining the FeatureConfig
              
                		
                  Main Keys
                


                		
                  Feature Information
                


              


            


            		
              Defining the ModelConfig
            


            		
              Saving ml4ir Models
              
                		
                  Saving preprocessing logic
                


              


            


            		
              Serving ml4ir Models on the JVM
              
                		
                  A high level usage of the Scala utilities
                


              


            


          


        


        		
          Advanced Guide
          
            		
              Using custom preprocessing functions
            


            		
              Using custom feature transformation functions
            


            		
              Predicting with a model trained on ml4ir
              
                		
                  Predicting with the tfrecords signature
                


                		
                  Predicting with the default signature
                


              


            


            		
              Transfer Learning with ml4ir
            


            		
              Running Kfold Cross Validation
            


          


        


        		
          API Documentation
          
            		
              Pipelines
              
                		
                  RelevancePipeline
                


                		
                  RankingPipeline
                


                		
                  ClassificationPipeline
                


              


            


            		
              Data Loaders and Helpers
              
                		
                  RelevanceDataset
                


                		
                  tfrecord_reader
                


                		
                  csv_reader
                


                		
                  tfrecord_writer
                


              


            


            		
              Relevance Models
              
                		
                  RelevanceModel
                


                		
                  RankingModel
                


              


            


            		
              Feature Configuration
              
                		
                  FeatureConfig
                


                		
                  ExampleFeatureConfig
                


                		
                  SequenceExampleFeatureConfig
                


              


            


            		
              Losses
              
                		
                  RelevanceLossBase
                


                		
                  SigmoidCrossEntropy
                


                		
                  RankOneListNet
                


                		
                  CategoricalCrossEntropy
                


              


            


            		
              Metrics
              
                		
                  MeanReciprocalRank
                


                		
                  AverageClickRank
                


                		
                  CategoricalAccuracy
                


                		
                  Top5CategoricalAccuracy
                


              


            


            		
              Feature Processing
            


            		
              Feature Transformation
              
                		
                  Categorical Feature Transformations
                


                		
                  Sequence Feature Transformations
                


                		
                  Tensorflow Native Operations
                


              


            


            		
              Interaction Model
              
                		
                  InteractionModel
                


                		
                  UnivariateInteractionModel
                


                		
                  feature_layer
                


              


            


            		
              Scorer
              
                		
                  ScorerBase
                


                		
                  RelevanceScorer
                


              


            


            		
              File I/O Utilities
              
                		
                  FileIO
                


                		
                  LocalIO
                


                		
                  SparkIO
                


              


            


          


        


        		
          Changelog
          
            		
              [0.1.16] - 2023-02-06
              
                		
                  Added
                


              


            


            		
              [0.1.15] - 2023-01-20
              
                		
                  Changed
                


                		
                  Added
                


              


            


            		
              [0.1.14] - 2022-11-18
              
                		
                  Changed
                


              


            


            		
              [0.1.13] - 2022-10-17
              
                		
                  Fixed
                


                		
                  Added
                


              


            


            		
              [0.1.12] - 2022-04-26
            


            		
              [0.1.11] - 2021-01-18
              
                		
                  Changed
                


              


            


            		
              [0.1.10] - 2021-12-29
              
                		
                  Changed
                


              


            


            		
              [0.1.9] - 2021-11-29
              
                		
                  Changed
                


              


            


            		
              [0.1.8] - 2021-10-21
              
                		
                  Added
                


              


            


            		
              [0.1.7] - 2021-09-30
              
                		
                  Added
                


              


            


            		
              [0.1.6] - 2021-07-16
              
                		
                  Fixed
                


              


            


            		
              [0.1.5] - 2021-07-15
              
                		
                  Added
                


              


            


            		
              [0.1.4] - 2021-06-30
              
                		
                  Changed
                


              


            


            		
              [0.1.3] - 2021-06-24
              
                		
                  Changed
                


              


            


            		
              [0.1.2] - 2021-06-16
              
                		
                  Added
                


              


            


            		
              [0.1.1] - 2021-05-20
              
                		
                  Added
                


              


            


            		
              [0.1.0] - 2021-03-01
              
                		
                  Changed
                


              


            


            		
              [0.0.5] - 2021-02-17
              
                		
                  Added
                


                		
                  Fixed
                


              


            


          


        


        		
          License
        


        		
          Contact Us
        


      


    
  

_images/ml4ir.png
4 TensorFlow

/ eacre [ <
oy T ) auenzsaL

Koras Contigurable | | Customizable o
Functonal ode Feature = Soring
AP Architecture Layer Rt

https://github.com/salesforce/mldir






_static/plus.png





_images/ml4ir_framework.png
RelevanceModel
fi(), evaluate(), predict(), save(), load()

Scorer
Inputs -> Score.

InteractionModel
Inputs -> Dense Feature

ModelConf
FeatureConfig o
Dict
o r u
Keras optimizers.Optimizer Listkeras.merics Metric]






_static/ml4ir_framework.png
RelevanceModel
fi(), evaluate(), predict(), save(), load()

Scorer
Inputs -> Score.

InteractionModel
Inputs -> Dense Feature

ModelConf
FeatureConfig o
Dict
o r u
Keras optimizers.Optimizer Listkeras.merics Metric]






_static/ml4ir_savedmodel.png
v il e
> s
B seeiroson
» i vaabes

v B e

bidirectional.npz
domain_id_embedding.npz
domain_name_embedding.npz
final_dense.npz

first dense.npz
uery.text_bytes_embedding.npz

second_dense.npz

vocab_lookup.npz

v Il s
> Bl e
[ e—
> Bl s





_static/saved_model.png
Black Box tf Model

Serving Signature






_static/tfrecord.png
query previous product
toxt products group

query_1

query previous product
toxt products group

query_2 record 2

page views
score

Sequence

query_1

Query Classification Learning to Rank
Example SequenceExample





_static/query_classification_data.png
query.id  query text

«domain_name

previous_products

product_group

query 1d 0 coueh cushion
queny_id_1 wok
query id 2 cuisinart knife
queny_id 3 auracell

query_id_4 iphone x

Fumiture
Kitchen
Kitchen

Electronics

Electronics

Couch, Bookmarks]
[Gooking O]

[Cutting Boara]
[Flashight, Insect Spray]

[Graphics Card, Mouse]

Cushion
Fiying pan
Knives
Batteries

Mobile Phones





_static/ranking_data.png
queryid  query text record_text rank popularity_score page_views_score domain_name  clicked
query.2 food processor  Hamilton Beach 12-Cup Stack & Snap Food Processor 1 0898135 020381 Ktchen 1
query.2  food processor Ninja BN601 Professional Plus Food Processor 2 1147889 0.000000 Kitchen 0
query 5 Arthur C Clarke Chidhood's End 1 1990899 0042572 Science Fiction Books 1
query.5  Arthur G Clarke Rendezvous with Rama 2 0881701 0042572 Science Fiction Books 0
query 5 Arthur C Clarke 2001: A Space Odyssey 3 -1.565636 0041261 Science Fiction Books 0
query 5 Arthur C Clarke 2010: OcysseyTwo 4 -0.921634 0,082535 Science Fiction Books 0
query 5 Arthur C Clarke The Fountains of Paradise 5 -1.658981 0,046478  Science Fiction Books 0
query.5  Arthur G Clarke Ramall 6 -0.702505 0,030636  Science Fiction Books 0
query.6  insectspray Raid Flying Insect Kiler 1 -0.384123 0.040924 Pest Control 1
query. 6 insectspray Oriho Home Dense Max Indoor Insect Barrier 2 0531182 0.000000 Pest Control 0





_static/up-pressed.png





_static/up.png





